EI / SCOPUS / CSCD 收录

中文核心期刊

卷积混迭语音信号的联合块对角化盲分离方法

张华, 冯大政, 庞继勇

张华, 冯大政, 庞继勇. 卷积混迭语音信号的联合块对角化盲分离方法[J]. 声学学报, 2009, 34(2): 167-174. DOI: 10.15949/j.cnki.0371-0025.2009.02.015
引用本文: 张华, 冯大政, 庞继勇. 卷积混迭语音信号的联合块对角化盲分离方法[J]. 声学学报, 2009, 34(2): 167-174. DOI: 10.15949/j.cnki.0371-0025.2009.02.015
ZHANG Hua, FENG Dazheng, PANG Jiyong. Blind convolutive separation algorithm for speech signals via joint block diagonalization[J]. ACTA ACUSTICA, 2009, 34(2): 167-174. DOI: 10.15949/j.cnki.0371-0025.2009.02.015
Citation: ZHANG Hua, FENG Dazheng, PANG Jiyong. Blind convolutive separation algorithm for speech signals via joint block diagonalization[J]. ACTA ACUSTICA, 2009, 34(2): 167-174. DOI: 10.15949/j.cnki.0371-0025.2009.02.015
张华, 冯大政, 庞继勇. 卷积混迭语音信号的联合块对角化盲分离方法[J]. 声学学报, 2009, 34(2): 167-174. CSTR: 32049.14.11-2065.2009.02.015
引用本文: 张华, 冯大政, 庞继勇. 卷积混迭语音信号的联合块对角化盲分离方法[J]. 声学学报, 2009, 34(2): 167-174. CSTR: 32049.14.11-2065.2009.02.015
ZHANG Hua, FENG Dazheng, PANG Jiyong. Blind convolutive separation algorithm for speech signals via joint block diagonalization[J]. ACTA ACUSTICA, 2009, 34(2): 167-174. CSTR: 32049.14.11-2065.2009.02.015
Citation: ZHANG Hua, FENG Dazheng, PANG Jiyong. Blind convolutive separation algorithm for speech signals via joint block diagonalization[J]. ACTA ACUSTICA, 2009, 34(2): 167-174. CSTR: 32049.14.11-2065.2009.02.015

卷积混迭语音信号的联合块对角化盲分离方法

基金项目: 

国家863计划课题(2007AA01Z288)。

国家自然科学基金(60672128,60702057)

详细信息
  • PACS: 
      43.60

Blind convolutive separation algorithm for speech signals via joint block diagonalization

  • 摘要: 针对语音信号的卷积混迭模型,利用不同语音信号之间的近似独立和短时平稳特性,提出一种基于信号二阶统计量的联合块对角化方法,解决超定卷积盲分离问题。该方法采用非对角线上各子矩阵 F -范数的平方和作为联合块对角化性能的评判准则,将原四次代价函数转化为一组较为简单的二次子代价函数,每一子代价函数用于估计酉混迭矩阵的一个子矩阵。依次最小化各子函数,迭代搜索代价函数最小点,得到混迭矩阵的估计。理论分析及实验结果表明,所提方法不仅能够达到与类Jacobi经典方法同样好的分离效果,并且具有更低的计算复杂度、更快的收敛速度和对传输信道阶数、迭代初始值不敏感的特点。
    Abstract: A blind speech source separation algorithm for the overdetermined convolutive mixture model in time-domain is proposed via joint block-diagonalization based on the mutual-independence property and the short-time stationary of the speech signals.Taking the sum of the F -norms of all off-diagonal sub-matrices as a criterion,a novel joint block-diagonalization algorithm is proposed to estimate the whole mixture matrix through minimizing a sequence of quadratic subfunctions corresponding to mixture submatrices.Both theoretical analysis and simulation results show that the proposed algorithm has much lower complexity and faster convergence speed than the classical Jacobi-like method with no performance loss.In addition,there almost are no obvious impacts of the channel order and initialization values on the convergence speed.
计量
  • 文章访问数:  35
  • HTML全文浏览量:  4
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-06-09
  • 修回日期:  2008-09-04
  • 网络出版日期:  2022-07-05

目录

    /

    返回文章
    返回