Guided wave dispersion characteristics of multi-layered porous lithium-ion batteries and their application
-
摘要: 采用状态矩阵与勒让德级数联合法, 同步联立Biot理论, 构建多层多孔锂离子电池声传播特性理论模型, 以厚1.9 mm软包钴酸锂电池为例, 数值分析了荷电状态(State of Charge, SOC)对多模态频散曲线的影响规律。同时, 建立了电池中的声传播特性频域仿真模型, 提取频域仿真中的超声导波频散曲线。此外, 以体积小、柔性强的压电纤维复合材料(Macro Fiber Composite, MFC)为基础, 实验探究了不同SOC对锂离子电池中声学行为的影响。采用互相关分析获取电池放电过程中声波渡越时间的偏移规律, 建立了1.9 mm软包钴酸锂电池的声学波动行为与电池SOC间的映射关系。Abstract: Based on the combination of state matrix and Legendre series method with Biot's theory, a theoretical model for wave propagation in multi-layered porous lithium-ion batteries is established. Taking 1.9 mm-thick soft-pack cobalt oxides lithium-ion battery as an example, the influence of State Of Charge (SOC) on the multi-mode dispersion curves is numerically analyzed. At the same time, a frequency-domain simulation model of the wave propagation characteristics of a multilayer porous lithium-ion battery is established, and the ultrasonic guided wave dispersion curves in frequency-domain simulation are extracted. In addition, based on Macro Fiber Composite (MFC) transducer which possesses small volume and strong flexibility, the influence of different states of charge on the acoustic behavior of lithium-ion batteries is explored experimentally. The cross-correlation analysis is used to obtain the shift in the time of flight during the discharging process. The mapping relationship between acoustic wave behavior and SOC of a 1.9 mm-thick soft-pack cobalt oxides lithium-ion battery is established.
-
-
[1] 杨世春, 华旸, 顾启蒙等. 锂离子电池SOC及容量的多尺度联合估计. 北京航空航天大学学报, 2020; 46(8):1444-1452 [2] Ahmed M S, Balasingam B, Pattipati K R. Experimental data on open circuit voltage characterization for Li-ion batteries. Data brief, 2021; 36:107071
[3] 郭向伟. 电动汽车电池荷电状态估计及均衡技术研究. 博士学位论文, 华南理工大学, 2016 [4] Lipu M S H, Hannan M A, Hussain A et al. Data-driven state of charge estimation of lithium-ion batteries:Algorithms, implementation factors, limitations and future trends. J. Cleaner Prod., 2020; 277:124110
[5] 郑阳, 何存富, 吴斌, 周进节. 采用超声导波阵列技术研究板类结构大面积检测. 声学学报, 2013; 38(1):71-79 [6] 刘增华, 彭秋玲, 何存富, 吴斌. 复合材料板声发射源定位的时间差映射方法. 声学学报, 2020; 45(3):385-393 [7] Li H, Zhou Z. Numerical simulation and experimental study of fluid-solid coupling-based air-coupled ultrasonic detection of stomata defect of lithium-ion battery. Sensors, 2019; 19(10):2391
[8] Hsieh A G, Bhadra S, Hertzberg B J et al. Electrochemical-acoustic time of flight:in operando correlation of physical dynamics with battery charge and health. Energy Environ. Sci., 2015; 8(5):1569-1577
[9] Gold L, Bach T, Virsik W et al. Probing lithium-ion batteries' state-of-charge using ultrasonic transmission-Concept and laboratory testing. J. Power Sources, 2017; 343:536-544
[10] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am., 1956; 28(2):168-178
[11] 许洲琛, 韩庆邦, 童紫薇, 齐立华, 王鹏, 单鸣雷, 朱昌平. 流体-孔隙介质圆柱界面波传播特性. 声学学报, 2018; 43(1):52-60 [12] Ladpli P, Kopsaftopoulos F, Chang F K. Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/actuators. J. Power Sources, 2018; 384:342-354
[13] Zheng S, Jiang S, Luo Y et al. Guided wave imaging of thin lithium-ion pouch cell using scanning laser Doppler vibrometer. Ionics, 2021; 27(2):643-650
[14] Gao J, Lyu Y, Zheng M et al. Guided waves propagation in multi-layered porous materials by the global matrix method and Biot theory. Appl. Acoust., 2021; 184:108356
[15] Gao J, Lyu Y, Zheng M et al. Modeling guided wave propagation in multi-layered anisotropic composite laminates by state-vector formalism and the Legendre polynomials. Compos. Struct., 2019; 228:111319
[16] 童韫哲, 范军, 王斌. Floquet-Bloch理论在频散曲线计算中的应用. 声学技术, 2020; 39(1):11-14 [17] 刘镇清, 黄瑞菊. 薄板声-超声检测超声传播模式的实验研究. 声学学报, 2000; 25(3):268-273 -
期刊类型引用(2)
1. 刘新超,吴信立,朱伟星. 基于超声波的储能站锂电池火灾极早期检测技术. 电力与能源. 2025(02): 126-129+134 . 百度学术
2. 李旺斐,邓庆田,许爽,李新波,宋学力,温金鹏. 层合多孔结构拉剪力学行为分析. 塑性工程学报. 2024(05): 208-223 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 227
- HTML全文浏览量: 0
- PDF下载量: 36
- 被引次数: 3