Processing math: 100%

EI / SCOPUS / CSCD 收录

中文核心期刊

声悬浮高温小球轴向稳定性研究

王晓振, 常钦, 吴鹏飞, 徐德龙, 王祥达, 张丽, 林伟军

王晓振, 常钦, 吴鹏飞, 徐德龙, 王祥达, 张丽, 林伟军. 声悬浮高温小球轴向稳定性研究[J]. 声学学报, 2024, 49(1): 129-136. DOI: 10.12395/0371-0025.2022140
引用本文: 王晓振, 常钦, 吴鹏飞, 徐德龙, 王祥达, 张丽, 林伟军. 声悬浮高温小球轴向稳定性研究[J]. 声学学报, 2024, 49(1): 129-136. DOI: 10.12395/0371-0025.2022140
WANG Xiaozhen, CHANG Qin, WU Pengfei, XU Delong, WANG Xiangda, ZHANG Li, LIN Weijun. Study of the axial stability of a sphere with high temperature in acoustic levitation[J]. ACTA ACUSTICA, 2024, 49(1): 129-136. DOI: 10.12395/0371-0025.2022140
Citation: WANG Xiaozhen, CHANG Qin, WU Pengfei, XU Delong, WANG Xiangda, ZHANG Li, LIN Weijun. Study of the axial stability of a sphere with high temperature in acoustic levitation[J]. ACTA ACUSTICA, 2024, 49(1): 129-136. DOI: 10.12395/0371-0025.2022140
王晓振, 常钦, 吴鹏飞, 徐德龙, 王祥达, 张丽, 林伟军. 声悬浮高温小球轴向稳定性研究[J]. 声学学报, 2024, 49(1): 129-136. CSTR: 32049.14.11-2065.2022140
引用本文: 王晓振, 常钦, 吴鹏飞, 徐德龙, 王祥达, 张丽, 林伟军. 声悬浮高温小球轴向稳定性研究[J]. 声学学报, 2024, 49(1): 129-136. CSTR: 32049.14.11-2065.2022140
WANG Xiaozhen, CHANG Qin, WU Pengfei, XU Delong, WANG Xiangda, ZHANG Li, LIN Weijun. Study of the axial stability of a sphere with high temperature in acoustic levitation[J]. ACTA ACUSTICA, 2024, 49(1): 129-136. CSTR: 32049.14.11-2065.2022140
Citation: WANG Xiaozhen, CHANG Qin, WU Pengfei, XU Delong, WANG Xiangda, ZHANG Li, LIN Weijun. Study of the axial stability of a sphere with high temperature in acoustic levitation[J]. ACTA ACUSTICA, 2024, 49(1): 129-136. CSTR: 32049.14.11-2065.2022140

声悬浮高温小球轴向稳定性研究

基金项目: 国家自然科学基金项目(11904384, 11474305)、中国科协青年人才托举工程项目(2022-2024QNRC001)和中国科学院基础前沿研究计划项目(ZDBS-LY-SLH037)资助
详细信息
    通讯作者:

    吴鹏飞, wpf@mail.ioa.ac.cn

    徐德龙, xudelong@mail.ioa.ac.cn

  • PACS: 
    • 43.38  (换能器, 声学器件)
    • 43.35  (超声学, 量子声学, 声的物理效应)

Study of the axial stability of a sphere with high temperature in acoustic levitation

  • 摘要:

    针对驻波声悬浮高温小球的轴向稳定性, 建立了声−热−流−重力场耦合的物理模型, 采用有限元方法计算了高温小球周围空间的不均匀温度场和声场, 分析了驻波声场中直径2 mm的氮化硅小球在300~2000 K温度区间的轴向悬浮稳定性, 并通过常温下声悬浮实验验证了仿真模型的准确性。结果表明在初始悬浮间距满足谐振并保持不变的条件下, 随着悬浮小球的温度升高, 小球的平衡位置降低, 并且存在能保持稳定悬浮状态的温度最大值。在小球升温的过程中, 通过反馈调节发射端−反射端间距和发射端激励电压, 可以在一定程度上保持高温小球的轴向悬浮稳定性。

    Abstract:

    Aiming at the axial stability of a high-temperature sphere levitated in a standing wave field, the physical model coupled with the sound field, heat field, flow field and gravity field is established. Based on the finite element method, the non-uniform temperature field and sound field in the space around the sphere are calculated. The axial levitation stability of a silicon nitride sphere with a diameter of 2 mm in the standing wave acoustic field are analyzed when the temperature increases from 300 K to 2000 K. The accuracy of the simulation model is verified by the experiments of acoustic levitation at normal atmospheric temperature. The results show that under the condition that the initial levitation spacing satisfies resonance and remains constant, the equilibrium position of the sphere decreases with increasing temperature of the sphere, and there exists a maximum temperature for stable levitation of the sphere. With increasing temperature, the axial stability of the levitated sphere can be maintained to a certain extent by adjusting the emitter-reflector distance and emitter excitation voltage through feedback.

  • 图  1   单轴声悬浮的二维轴对称几何模型

    图  2   流热耦合模拟的边界条件设置 (a) 传热模型; (b) 层流模型

    图  3   轴向回复力系数 、最大声压及接收端电压随换能器间距的变化

    图  4   轴向回复力系数 、邻域最大声压、接收端电压及反射端中心点声压随换能器间距的变化(悬浮球位于第3个悬浮节点附近)

    图  5   不同小球温度下最大声压值随换能器间距的变化(发射端激励电压130 V)

    图  6   不同小球温度下不同位置处轴向声辐射力与重力的比较(换能器间距35.5 mm, 发射端激励电压130 V)

    图  7   不同条件下的绝对声压值分布(a) T = 300 K, H = 35.5 mm, h = 21.3 mm, V0 = 130 V; (b) T = 2000 K, H = 36.1 mm, h = 18.8 mm, V0 = 175 V; (c) T = 2000 K, H = 35.5 mm, h = 18.2 mm, V0 = 205 V

    图  8   空气介质的温度分布(T = 2000 K, H = 35.5 mm, h = 21.3 mm)

    图  9   不同位置处轴向声辐射力与重力的比较(T=2000 K)

    图  10   半径1 mm氮化硅小球可悬浮的最高温度随发射端激励电压值的变化曲线

    图  11   实验装置

    图  12   常温下单轴悬浮半径1 mm氮化硅小球(a) 2个悬浮节点; (b) 3个悬浮节点; (c) 4个悬浮节点

    表  1   实验与仿真中稳定悬浮对应的换能器间距H (mm)

    2个节点3个节点4个节点
    仿真17.9 mm26.9 mm35.7 mm
    实验18.6 mm27.9 mm36.6 mm
    相对误差4%4%3%
    下载: 导出CSV
  • [1]

    Andrade M, Marzo A, Adamowski J C. Acoustic levitation in mid-air: Recent advances, challenges, and future perspectives. Appl. Phy. Lett., 2020; 116(25): 250501 DOI: 10.1063/5.0012660

    [2] 蔡飞燕, 孟龙, 李飞, 等. 声操控微粒研究进展. 应用声学, 2018; 37(5): 655−663 DOI: 10.11684/j.issn.1000-310X.2018.05.008
    [3] 臧雨宸, 林伟军, 苏畅. 看不见的“手”——声辐射力及其应用. 物理, 2021; 50(11): 749−760 DOI: 10.7693/wl20211105
    [4]

    Yang Y, Ma T, Li S, et al. Self-navigated 3D acoustic tweezers in complex media based on time reversal. Research, 2021; 2021: 9781394 DOI: 10.34133/2021/9781394

    [5]

    Zang Y, Chang Q, Wang X, et al. Natural oscillation frequencies of a Rayleigh sphere levitated in standing acoustic waves. J. Acoust. Soc. Am., 2022; 152(5): 2916−2928 DOI: 10.1121/10.0015142

    [6]

    Kremer J, Kilzer A, Petermann M. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets. Rev. Sci. Instrum., 2018; 89(1): 015109 DOI: 10.1063/1.4998796

    [7]

    Tian Y, Holt R G, Apfel R E. A new method for measuring liquid surface tension with acoustic levitation. Rev. Sci. Instrum., 1995; 66(5): 3349−3354 DOI: 10.1063/1.1145506

    [8] 阮莹, 胡亮, 闫娜, 等. 空间材料科学研究进展与未来趋势. 中国科学: 技术科学, 2020; 50(6): 603−649 DOI: 10.1306/SST-2020-0019
    [9] 翟薇, 常健, 耿德路, 等. 金属材料凝固过程研究现状与未来展望. 中国有色金属学报, 2019; 29(9): 1953−2008 DOI: 10.19476/j.ysxb.1004.0609.2019.09.10
    [10] 元一单, 宫厚军, 邓坚, 等. 严重事故下堆芯熔融物行为与现象研究. 中国基础科学, 2021; 23(3): 1−8 DOI: 10.3969/j.issn.1009-2412.2021.03.001
    [11]

    Xie W J, Cao C D, Lü Y, et al. Levitation of iridium and liquid mercury by ultrasound. Phys. Rev. Lett., 2002; 89(10): 104304 DOI: 10.1103/PhysRevLett.89.104304

    [12] 解文军. 声悬浮优化设计理论及其应用研究. 博士学位论文, 西安: 西北工业大学, 2002: 41−51
    [13] 范皓然, 尹冠军, 李盼, 等. 具有环形限位夹持力的单轴式超声悬浮系统. 声学学报, 2018; 43(3): 364−371 DOI: 10.15949/j.cnki.0371-0025.2018.03.012
    [14] 阮永都, 梁旭. 逆反射超构表面的驻波声悬浮研究. 中国科学: 技术科学, 2020; 50(9): 1226−1234 DOI: 10.1360/SST-2019-0397
    [15]

    Andrade M, Marzo A. Numerical and experimental investigation of the stability of a drop in a single-axis acoustic levitator. Phys. Fluids, 2019; 31(11): 117101 DOI: 10.1063/1.5121728

    [16]

    Hong Z Y, Xie W J, Wei B. Vibration characteristics of acoustically levitated object with rigid and elastic reflectors. Chin. Phys. Lett., 2010; 27(1): 014301 DOI: 10.1088/0256-307X/27/1/014301

    [17]

    Hong Z Y, Xie W J, Wei B. Acoustic levitation with self-adaptive flexible reflectors. Rev. Sci. Instrum., 2011; 82(7): 074904 DOI: 10.1063/1.3610652

    [18]

    Xie W J, Wei B. Temperature dependence of single-axis acoustic levitation. J. Appl. Phys., 2003; 93(5): 3016−3021 DOI: 10.1063/1.1540232

    [19]

    Nordine P C, Merkley D, Sickel J, et al. A levitation instrument for containerless study of molten materials. Rev. Sci. Instrum., 2012; 83(12): 456−566 DOI: 10.1063/1.4770125

    [20]

    Jiang G S, Yang Y F, Xu W L, et al. Convective heat exchange characteristics of acoustic-induced flows over a sphere: The role of acoustic streaming. Appl. Acoust., 2021; 177: 107915 DOI: 10.1016/j.apacoust.2021.107915

    [21]

    Chang Q, Zang Y C, Lin W J, et al. Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field. Chin. Phys. B, 2022; 31(4): 422−429 DOI: 10.1088/1674-1056/ac2d1f

    [22] 吴鹏飞, 王晓振, 高金彪, 等. 一种自适应调节谐振距离的声悬浮装置及方法: CN114653564A. 2022-02-15
    [23]

    Gor’Kov L P. On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov. Phy. Dokl., 1962; 6(1): 773−775

    [24]

    Barmatz M, Collas P. Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields. J. Acoust. Soc. Am., 1985; 77(3): 928−945 DOI: 10.1121/1.392061

图(12)  /  表(1)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  20
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2023-02-15
  • 网络出版日期:  2024-01-04
  • 刊出日期:  2024-01-04

目录

    /

    返回文章
    返回