基于交叉频域分组和深度学习的水声信道预测方法
Underwater acoustic channel prediction through cross-frequency-domain grouping and deep learning
-
摘要: 水声信道预测在水声自适应通信组网、水下环境目标感知等方面发挥了重要作用, 现有的水声信道预测通常在时域中进行, 在信道呈现非稀疏结构时预测性能会下降。为此, 提出了一种基于交叉频域分组和深度学习的频域信道预测方法(CFDG-DL), 基于交叉频率相干矩阵将频域信道的所有频点分成若干组, 每组使用包含全连接层和长短期记忆层的深度学习模型进行信道预测。所提方法可以避免信道非稀疏带来的影响, 同时利用频点之间的交叉相关性提升预测性能。使用KAU2和BCH1公开海上实验数据集对所提方法的性能进行验证, 结果表明, 与反向传播神经网络和长短期记忆网络预测方法相比, 所提方法具有更低的预测误差和计算复杂度。Abstract: Underwater acoustic (UWA) channel prediction has played an important role in UWA adaptive communication network and underwater environment target perception. The existing underwater acoustic channel prediction is usually carried out in the time domain, and the prediction performance will decrease when the channel presents a non-sparse structure. This paper proposes a channel prediction method through cross-frequency-domain grouping and deep learning (CFDG-DL). The proposed CFDG-DL method uses the cross-frequency coherence matrix to divide channel’s all frequency points into several groups, and each group uses a deep learning model containing several fully connected layers and long short-term memory layers for channel prediction. The proposed method can avoid the influence of channel non-sparseness and improve the prediction performance by using the correlation between frequency points. The performance of the proposed method is verified by using the KAU2 and BCH1 public at-sea experiment datasets. Experimental results show that the proposed method has lower prediction error and computational complexity than the back propagation neural network and long short-term memory network prediction methods.
下载: