EI / SCOPUS / CSCD 收录

中文核心期刊

利用分层语义编码器网络的非合作水声通信信号判别方法

Recognition method of non-cooperation underwater communication signals using hierarchical semantic encoder transformer network

  • 摘要: 为解决非合作条件下水声通信信号自动检测和判别的难题, 提出了一种利用分层语义编码器网络的非合作水声通信信号检测和判别方法。该网络基于分层编码器结构和循环移位窗口注意力机制, 无需采用递归技术, 克服了水声样本量及计算资源的限制, 同时具有不需要信号先验信息、能够自主地进行声音事件定位和信号特征提取判别的优势。仿真生成了不同信噪比的2PSK信号、2FSK信号、4FSK信号、4PSK信号、DSSS信号和OFDM信号, 信号检测和判别的平均精度为92.4%; 湖上实测的2FSK信号、4FSK信号和2PSK信号3类水声通信信号判别率为96.1%, 判别试验结果表明了该方法的有效性。

     

    Abstract: In order to solve the problem of automatic detection and modulation recognition of underwater acoustic communication signals under non-cooperative conditions, this paper proposes a non-cooperative underwater acoustic communication signal detection and modulation recognition method based on a deep learning network. This deep learning network is based on a hierarchical transformer structure and mask cyclic shifted window attention mechanism, which does not require recursion. This deep learning network overcomes the limitations of underwater acoustic sample size and computational resources. It has the ability to autonomously locate sound events, extract and identify signal features without prior signal information. The experimental results of identifying 2PSK, 2FSK, 4FSK, 4PSK, DSSS, and OFDM signals simulated has precisions with 92.4%. The recognition rate of three types of underwater acoustic communication signals, namely 2FSK, 4FSK, and 2PSK signals, measured on the lake is 96.1%. Therefore, the experimental results show the effectiveness of this method.

     

/

返回文章
返回