EI / SCOPUS / CSCD 收录

中文核心期刊

面向水下噪声源目标识别的轻量化网络构建与优化方法

A lightweight network construction and optimization method for underwater radiated noise target recognition

  • 摘要: 本文提出了一种基于VGG-GAP及冗余特征剪枝的轻量化稳健水下噪声源目标识别网络构建与优化方法。该方法结合全局平均池化(GAP)对VGGNet进行优化, 得到轻量化的VGG-GAP网络; 利用特征图相关性对VGG-GAP进行网络剪枝, 进一步去除冗余的卷积核, 获得轻量级的网络结构。经ShipsEar和DeepShip数据集验证, 所提方法能够在参数量降低超过94%和计算量降低超过30%的情况下, 获得与原网络近似相同的识别性能。经过数据量逐渐减少的小样本数据集和失配水声信道中数据集的验证, 所提方法在小样本数据集和失配水声环境中具有更好的鲁棒性。

     

    Abstract: A lightweight robust underwater radiated noise target recognition network construction and optimization method based on VGG-GAP and redundant feature pruning is proposed. This method optimizes VGGNet by combining global average pooling (GAP) to create a lightweight VGG-GAP network. The redundant convolutional kernels in VGG-GAP are removed using a network pruning algorithm relying on feature map correlation to obtain the optimal network structure. Experimental results on the ShipsEar dataset and DeepShip dataset show that this method can achieve nearly the same recognition accuracy with over 94% reduction in parameters and over 30% reduction in computational cost without retraining or fine-tuning the parameters. In the test on datasets with decreasing sample numbers and datasets with mismatched hydroacoustic channels, the networks improved by the proposed optimization method are more robust in small-sample datasets and mismatched underwater acoustic environments.

     

/

返回文章
返回