EI / SCOPUS / CSCD 收录

中文核心期刊

基于孪生神经网络特征提取的垂直阵目标距离估计方法

Target distance estimation of vertical array based on siamese neural network feature extraction

  • 摘要: 针对深度学习水下声源距离估计中存在的离散化标签多、类内样本少导致模型特征学习受限的问题, 提出了一种基于孪生神经网络特征提取的目标距离估计方法。首先通过仿真数据构建以距离为标签的正、负样本对数据集, 设计并训练了孪生神经网络以提取声源距离特征; 进而基于迁移学习策略分别构建了卷积神经网络距离估计模型(S-CNN)和残差神经网络距离估计模型(S-ResNet)。仿真实验表明该方法能够有效提升距离敏感特征的表达能力, S-CNN/S-ResNet相比无特征提取的NS-CNN/NS-ResNet距离估计性能均有提升, 且S-ResNet在不同训练样本数量、信噪比和环境误差下均优于S-CNN方法; SWellEX-96试验结果表明所提方法显著优于传统匹配场定位, 且S-ResNet在距离估计可信概率(领先约10%)和平均百分比误差(降低约2%)两项指标上均优于S-CNN方法。

     

    Abstract: To address the challenges in deep learning-based underwater acoustic source range estimation caused by high-dimensional discrete labels and scarce intra-class samples that constrain model feature learning, this study proposes a siamese neural network-based feature extraction method for target range estimation. First, a dataset containing distance-labeled positive/negative sample pairs was constructed using simulated data, followed by the design and training of a siamese neural network to extract range-discriminative features. Subsequently, siamese neural network feature extraction-based convolutional neural network (S-CNN) and siamese neural network feature extraction-based residual neural network (S-ResNet) were developed through transfer learning strategy. Simulation results demonstrate the method’s effectiveness in enhancing range-sensitive feature representation: S-CNN/S-ResNet outperformed baseline models without feature extraction (NS-CNN/NS-ResNet), with S-ResNet exhibiting superior robustness across varying training sample sizes, signal-to-noise ratios, and environmental uncertainties. The SWellEX-96 experiment validation confirmed the significant advantages of the proposed method over conventional matched-field localization techniques. Notably, the S-ResNet achieved 10% higher confidence probability and 2% lower mean percentage error compared to S-CNN.

     

/

返回文章
返回