EI / SCOPUS / CSCD 收录

中文核心期刊

李森森, 马征达, 丁洁, 邹彬彬, 陈晶晶. 基于双向融合金字塔和通道注意力的水下声学图像目标检测[J]. 声学学报. DOI: 10.12395/0371-0025.2023251
引用本文: 李森森, 马征达, 丁洁, 邹彬彬, 陈晶晶. 基于双向融合金字塔和通道注意力的水下声学图像目标检测[J]. 声学学报. DOI: 10.12395/0371-0025.2023251
LI Sensen, MA Zhengda, DING Jie, ZOU Binbin, CHEN Jingjing. Underwater acoustic image target detection based on bidirectional fusion pyramid and channel attention[J]. ACTA ACUSTICA. DOI: 10.12395/0371-0025.2023251
Citation: LI Sensen, MA Zhengda, DING Jie, ZOU Binbin, CHEN Jingjing. Underwater acoustic image target detection based on bidirectional fusion pyramid and channel attention[J]. ACTA ACUSTICA. DOI: 10.12395/0371-0025.2023251

基于双向融合金字塔和通道注意力的水下声学图像目标检测

Underwater acoustic image target detection based on bidirectional fusion pyramid and channel attention

  • 摘要: 为了实现水声目标的实时性和准确性检测, 提出了一种融合了双向金字塔网络和通道注意力网络的水下声学图像目标检测模型(BPCA-Net), 以进行端到端的水下目标分类与定位。首先, BPCA-Net模型将通道注意力机制融入先进的骨干网ConvNeXt, 对提取的特征图通道进行重新组合, 强调有用的目标特征信息; 然后, 将特征图输入设计的轻量化双向融合金字塔网络, 进行多尺度特征融合与增强; 最后, 将多张特征图送入单阶段检测头进行分类与定位。实验结果表明, 所提模型可以获得水下声学图像中目标的重要特征, 与现有的检测算法相比有较高的精确性。

     

    Abstract: For real-time and accurate detection of underwater objects, this paper proposes an underwater acoustic image target detection model, the bidirectional pyramid channel attention network (BPCA-Net), which incorporates a bidirectional pyramid network and a channel attention network to achieve end-to-end underwater object classification and localisation. First, the BPCA-Net model incorporates a channel attention mechanism into the advanced backbone network ConvNeXt to recombine the extracted feature map channels to highlight useful object feature information. Then, the feature maps are fed into a designed lightweight bidirectional fusion pyramid network for multi-scale feature fusion and enhancement. Finally, the multiple feature maps are fed into a single stage detection head for classification and localisation. The experimental results show that the proposed model can extract important features of objects in underwater acoustic images, demonstrating high accuracy compared to existing detection algorithms.

     

/

返回文章
返回