Multicarrier spread spectrum underwater acoustic communication based on orthogonal chaotic constellation modulation
-
摘要:
针对多载波水声通信的信息安全和被调制识别的风险, 提出了基于正交混沌星座调制的多载波扩频水声通信方法。在发射端, 结合双通道
M 元扩频调制和多载波调制, 设计了一种具有二维混沌特征的星座符号以携带信息, 实现了物理层加密; 为克服深海大时延扩展, 在接收端采用基于门限降噪被动时间反转处理的M 元解扩方法, 并提出了基于多尺度自动峰值检测的软门限降噪被动时反改进方法。由k均值聚类、统计分析、相空间重构方法进行了安全性分析, 并基于实测深海信道仿真了系统的误码率性能。结果表明, 所提方法在保证可靠性的前提下, 能有效增强多载波水声通信的保密性。在声道轴深度进行了深海试验验证, 实现通信速率为150 bit/s, 通信距离150 km, 误码率小于1.16 × 10−4的安全可靠通信。Abstract:The multicarrier underwater acoustic (UWA) communication faces the risk of modulation recognition and information security. This paper proposes a multicarrier spread spectrum UWA communication method based on orthogonal chaotic constellation modulation. By combining two channel M-ary spread spectrum modulation and multicarrier modulation, two-dimensional chaotic constellation symbols are designed to modulate the transmitted bits, which enhances the physical layer security. The receiver adopts an M-ary despreading method based on threshold denoising passive time reversal for large delay spread of deep sea UWA channel. Then, a passive time reversal improvement method is proposed based on the automatic multiscale based peak detection (AMPD) soft threshold denoising. The k-means clustering, statistical analysis and phase space reconstruction are used to analyze the communication security, and the bit error rate (BER) simulation on the deep sea UWA channel is performed. The simulation results show that on the premise of ensuring the reliability, the proposed method can effectively enhance the security of the multicarrier UWA communication system. In addition, the deep-sea experiment verification at the depth of the acoustic axis is tested. The proposed method achieves secure and reliable UWA communication with the communication distance of 150 km and the communication rate of 150 bit/s and the BER less than 1.16 × 10−4.
-
-
表 1 基于AMPD的软门限计算方法
输入: h′(t), num, ξ 1. 计算h′norm(t)=|h′(t)|/max。
2. 将 {h'_{\text{norm}}}(t) 分为 {n_{\text{um}}} 组计算均值, 得到 {{\boldsymbol{m}}_{\text{ean}}} 。3. 由AMPD算法对 {{\boldsymbol{m}}_{\text{ean}}} 进行峰值搜索, 得到峰值序列 {{\boldsymbol{m}}_{\text{peak}}} ; 对 {{\boldsymbol{m}}_{\text{ean}}} 中的非峰值项 {{\boldsymbol{m}}'_{\text{ean}}} 求取均值, 得到 {\overline m_{\text{ean}}} = E\left( {{{\boldsymbol{m}}'_{\text{ean}}}} \right) 。
4. 在 {{\boldsymbol{m}}_{\text{peak}}} 中排除小于 \xi \max ({{\boldsymbol{m}}_{\text{peak}}}) 的峰值得到 {{\boldsymbol{m}}'_{\text{peak}}} , 最小值为 {{\boldsymbol{m}}_{in}} = {\mathrm{min}}({{\boldsymbol{m}}'_{\text{peak}}}) 。5. 若 {{\boldsymbol{m}}_{in}} < \dfrac{{{{\overline m}_{\text{ean}}}}}{\xi } , 则 {n_{\text{um}}} = {n_{\text{um}}} + 10 , 重复执行步骤2-4。若 {{\boldsymbol{m}}_{in}} \geqslant \dfrac{{{{\overline m}_{\text{ean}}}}}{\xi } , 则 {\varGamma _h} = \dfrac{{{{\overline m}_{\text{ean}}}}}{\xi }\max \left( {\left| {h'(t)} \right|} \right) 。 输出: {\varGamma _h} 表 2 仿真多载波扩频系统参数
参数 符号 取值 采样频率 (kHz) {f_s} 48 带宽 (kHz) B 2 中心频率 (kHz) {f_{\text{c}}} 3 子载波总数 K 512 符号周期 (s) {T_{\text{d}}} 0.256 补零后缀 (s) {T_{\text{zp}}} 0.064 表 3 各类调制方法的通信速率
参数 扩频序列
长度 NM 元扩频
参数 {\log _2}M通信速率 {R_{\text{b}}}
(bit/s)混沌调制64-6 64 6 300 混沌调制32-3 32 3 300 混沌调制32-6 32 6 600 混沌调相64-6 64 6 150 混沌调相32-3 32 3 150 混沌调相32-6 32 6 300 混沌量化64-6 64 6 300 密钥加密 64 6 300 表 4 海试实验系统参数
参数 符号 取值 M 元扩频 {\log _2}M 6 扩频序列长度 N 64 信道编码码率 {r_{\text{c}}} 1/2 采样频率 (kHz) {f_s} 96 带宽 (kHz) B 2 中心频率 (kHz) {f_{\text{c}}} 3 子载波总数 K 512 符号周期 (s) {T_{\text{d}}} 0.256 补零后缀 (s) {T_{\text{zp}}} 0.064 限幅参数 \lambda 0.65 峰均比 (dB) {P_{\text{APR}}} 7.8 表 5 试验数据解调结果
通信距离 数据包数 未编码误码率(降噪前) 未编码
误码率1/2LDPC误码率(降噪前) 1/2LDPC
误码率50 km 9 0 0 0 0 100 km 9 0 0 0 0 150 km 9 0.0169 0.0020 0.0078 0 表 6 150 km距离不同深度接收数据安全性检验结果
序号 1 2 3 4 5 6 7 8 9 接收深度 (m) 288 436 737 938 1060 1240 1685 2040 3050 信噪比 (dB) 3.95 9.94 17.53 18.65 7.95 18.44 11.92 8.07 7.51 轮廓系数均值 0.702 0.734 0.688 0.693 0.696 0.726 0.715 0.669 0.698 误码率 0 0.5 0 0 0 0 0.5 0 0 -
[1] 朱敏, 武岩波. 水声通信技术进展. 中国科学院院刊, 2019; 34(3): 289−296 DOI: 10.16418/j.issn.1000-3045.2019.03.006 [2] Lal C, Petroccia R, Pelekanakis K, et al. Toward the development of secure underwater acoustic networks. IEEE J. Oceanic Eng., 2017; 42(4): 1075−1087 DOI: 10.1109/JOE.2017.2716599
[3] 王巍, 普湛清, 张扬帆, 等. 稀疏信道条件下正交多载波扩频水声通信无导频信道估计算法. 声学学报, 2019; 44(4): 657−664 DOI: 10.15949/j.cnki.0371-0025.2019.04.026 [4] 马璐, 李梦瑶, 刘凇佐, 等. 多波束分集深海远程正交频分复用水声通信. 声学学报, 2022; 47(5): 579−590 DOI: 10.15949/j.cnki.0371-0025.2022.05.015 [5] 王悦悦, 王海斌, 台玉朋, 等. 深海远程正交频分复用水声通信簇约束的分布式压缩感知信道估计. 应用声学, 2023; 42(3): 454−466 DOI: 10.11684/j.issn.1000-310X.2023.03.002 [6] Fang T, Wang Q, Zhang L, et al. Modulation mode recognition method of non-cooperative underwater acoustic communication signal based on spectral peak feature extraction and random forest. Remote Sens., 2022; 14(7): 1603 DOI: 10.3390/rs14071603
[7] 江伟华, 陈东升, 吴燕艺, 等. 基于循环前缀相关性的水声OFDM信号调制识别. 应用声学, 2016; 35(1): 42−49 DOI: 10.11684/j.issn.1000-310X.2016.01.007 [8] Wang K, Zhang X. Blind noise variance and SNR estimation for OFDM systems based on information theoretic criteria. Signal Process., 2010; 90(9): 2766−2772 DOI: 10.1016/j.sigpro.2010.03.007
[9] Li Z. Automatic detection of the guard interval length in OFDM system. J. Commun., 2006; 1(6): 28−32 DOI: 10.4304/jcm.1.6.28-32
[10] 刘明骞, 李兵兵, 唐宁洁. 多径信道下ZP-OFDM信号的时域参数盲估计. 系统工程与电子技术, 2011; 33(11): 2531−2535 DOI: 10.3969/j.issn.1001-506X.2011.11.35 [11] Fang T, Liu S, Ma L, et al. Subcarrier modulation identification of underwater acoustic OFDM channel based on block expectation maximization and likelihood. Appl. Acoust., 2021; 173(1): 107654 DOI: 10.1016/j.apacoust.2020.107654
[12] Li J, Anwar S, Zhang X. Autocorrelation based modulation recognition of PSK signals for OFDM in underwater acoustics communication. 15th International Bhurban Conference on Applied Sciences and Technology, IEEE, Islamabad, Pakistan, 2018: 751−756
[13] 刘明骞, 李兵兵, 赵雷. 多径信道下OFDM信号子载波的调制方式识别新方法. 西安电子科技大学学报, 2011; 38(5): 20−26 DOI: 10.3969/j.issn.1001-2400.2011.05.004 [14] Sedaghatnejad S, Farhang M. Detectability of chaotic direct-sequence spread-spectrum signals. IEEE Wirel. Commun. Lett., 2015; 4(6): 589−592 DOI: 10.1109/LWC.2015.2469776
[15] 殷敬伟, 惠俊英, 王逸林, 等. M元混沌扩频多通道Pattern时延差编码水声通信. 物理学报, 2007; 1(10): 5915−5921 DOI: 10.3321/j.issn:1000-3290.2007.10.060 [16] 隗小斐, 何如龙, 陈津. 基于混沌加密的水声扩频通信技术. 舰船科学技术, 2022; 44(5): 101−104 DOI: 10.3404/j.issn.1672-7649.2022.05.020 [17] 舒秀军, 王海斌, 汪俊, 等. 一种多通道混沌调相扩频方式及其在水声通信中的应用. 声学学报, 2017; 42(2): 159−168 DOI: 10.15949/j.cnki.0371-0025.2017.02.004 [18] Pu Z, Wang W, Li Y, et al. Research on M-ary chaotic phase modulation orthogonal multi-carrier spread spectrum for underwater acoustic communication. OCEANS 2019, IEEE, France, Marseille, 2019: 8867491
[19] 雷蓓蓓. 基于物理层加密的调制方式隐蔽算法研究. 硕士学位论文, 西安: 西北大学, 2011: 23−32 [20] 岳敖, 李为, 马东堂, 等. 拉丁阵和幅相变换相结合的物理层加密传输算法. 信号处理, 2016; 32(6): 660−668 DOI: 10.16798/j.issn.1003-0530.2016.06.004 [21] 李小倩, 李为, 雷菁, 等. OFDM系统中基于三维星座旋转的物理层安全加密算法. 电子学报, 2017; 45(12): 2873−2880 DOI: 10.3969/j.issn.0372-2112.2017.12.007 [22] Wan L, Jia H, Zhou F, et al. Fine Doppler scale estimations for an underwater acoustic CP-OFDM system. Signal Process., 2020; 170: 107439 DOI: 10.1016/j.sigpro.2019.107439
[23] 尹艳玲, 乔钢, 刘凇佐. 正交频分复用无源时间反转信道均衡方法研究. 声学学报, 2015; 40(3): 469−476 DOI: 10.15949/j.cnki.0371-0025.2015.03.015