EI / SCOPUS / CSCD 收录

中文核心期刊

样本生成与Swin Transformer-YOLO网络结合的声呐图像目标检测

Sonar image target detection using sample generation and Swin Transformer-YOLO network

  • 摘要: 由于目标投放成本高和实验条件限制, 声呐图像样本稀缺且质量较差, 导致现有目标检测方法难以有效学习特征, 限制了性能提升。为解决这一问题, 本文提出了一种基于扩散模型样本生成与Swin Transformer-级联群体注意力机制(CGA)融合的改进YOLO模型(STC-YOLO)的声呐图像目标检测方法。首先, 利用LoRA对稳定扩散模型进行参数调整, 并结合BLIP文本模型的语义特征, 生成高质量、多样化的声呐图像, 以构建新的数据集。其次, 将Swin Transformer结构引入YOLOv8的主干网络, 增强小目标的多尺度特征提取能力, 同时在C2f模块中融合CGA机制, 以增强小目标的感知能力。最后, 采用偏斜交并比损失函数(SIoU)以适应复杂的水下场景。实验结果表明, 所训练的生成模型能够在数据有限的情况下生成多样且真实的新样本。与原YOLOv8模型相比, 改进后的STC-YOLO模型检测精度提升了5%, 平均精度提升了12.6%, 实现了对水下小目标的高精度检测。

     

    Abstract: Due to the high cost of data collection and limited experimental conditions, sonar images are often scarce and of poor quality, which hinders effective feature learning and limits the performance of existing detection methods. This paper proposes an improved YOLO model, i.e. Swin Transformer-cascaded group attention YOLO (STC-YOLO), for sonar image target detection, which integrates diffusion-based sample generation with a Swin Transformer and cascaded group attention (CGA) mechanism. First, stable diffusion is fine-tuned via LoRA and incorporate semantic features from the bootstrapping language-image pre-training text model to generate high-quality and diverse sonar images for dataset expansion. Then, Swin Transformer is introduced into the YOLOv8 backbone to enhance multi-scale feature extraction for small targets, while integrating the CGA mechanism into the C2f module to improve small object perception. Additionally, the skewed intersection-over-union (SIoU) loss function is utilized to better adapt to the complexities of underwater environments. Experimental results indicate that the trained generative model can produce diverse and realistic samples even in data-scarce scenarios. Compared to the original YOLOv8 model, the enhanced STC-YOLO model exhibits a 5% increase in detection accuracy and a 12.6% improvement in mean average precision, achieving high-precision detection of small underwater targets.

     

/

返回文章
返回