EI / SCOPUS / CSCD 收录

中文核心期刊

文本无关说话人识别的全特征矢量集模型及互信息评估方法

Text-independent speaker identification using complete feature corpus and mutual information evaluation

  • 摘要: 提出了一种文本无关说话人识别的全特征矢量集模型及互信息评估方法,该模型通过对一组说话人语音数据在特征空间进行聚类而形成,全面地反映了说话人语音的个性特征。对于说话人语音的似然度计算与判决,则提出了一种互信息评估方法,该算法综合分析距离空间和信息空间的似然度,并运用最大互信息判决准则进行识别判决。实验分析了线性预测倒谱系数(LPCC)和Mel频率倒谱系数(MFCC)两种情况下应用全特征矢量集模型和互信息评估算法的说话人识别性能,并与高斯混合模型进行了比较。结果表明:全特征矢量集模型和互信息评估算法能够充分反映说话人语音特征,并能够有效评估说话人语音特征相似程度,具有很好的识别性能,是有效的。

     

    Abstract: A complete feature corpus as speaker model and a evaluation algorithm of mutual information for text-independent speaker identification are proposed. The speaker model is trained by a clustering algorithm in feature vector space using speech samples with various representative pronunciation characteristics of the speaker. The evaluation algorithm is used to calculate the likelihood between input speech and the models in distance and information space, maximum mutual information decision rule is used to decide the identity of speaker. Experiments on performance analysis with comparison to GMM (Gaussian Mixture Model) method according to linear predictive cepstrum and Mel-fequency cepstrum parameters show the proposed model and evaluation algorithm is quite effective.

     

/

返回文章
返回