EI / SCOPUS / CSCD 收录

中文核心期刊

利用声带动力学模型参数反演方法进行病变嗓音分类

Parameter inversion method of vocal fold dynamic model in pathological voice classification

  • 摘要: 提出一种声带动力学模型参数反演方法,从发声机理角度对声带病变嗓音进行有效区分。依据声带生理组织和伯努利定律构建声带动力学模型,确定模型优化参数向量,耦合声门气流获取模型声门波;利用迭代自适应逆滤波算法获得实际嗓音声门波作为目标声门波;采用遗传优化算法提出通过匹配目标和模型声门波特征参数实现模型参数反演。实验结果表明,表征声门波的各时频域参数匹配相对误差不超过2%;依据反演所获模型参数提出去除声门下压影响的平均归一化缩放系数,克服声带非对称性特征在区分病变嗓音方面的不足,实现病理嗓音的全面有效区分。

     

    Abstract: In order to do some researches on the pathological voice classification in the aspect of acoustic mechanism, a dynamics model parameter inversion method is proposed. Based on vocal fold structure and Bernoulli's law, a mechanical model of vocal fold called two-mass model is established, and then coupled to the glottal airflow to produce glottal excitation. Simultaneously, a set of model parameters needed to be optimized is selected. Finally, a model parameter inversion procedure is to reproduce the glottal excitation that will match with the objective obtained from the vocal voice using iterative adaptive inverse filtering(IAIF). Within the inversion procedure, a parameter optimization is performed using genetic algorithm(GA). That the glottal excitation time-frequency domain features' matching relative error is less than 2% shows the good performance of the inversion procedure. The average normalized scaling on the basis of the optimized parameters sets is proposed to overcome vocal fold asymmetry's defects in pathological voice classification,realizing the valid and entire distinguishment.

     

/

返回文章
返回