摘要:
研究可激发气体中振动模式能量转移速率和声弛豫过程形成的关系,将单一气体Tanczos弛豫方程理论[J.Chem.Phys.25,439(1956)]扩展应用于混合气体中振动模式的振动-振动(V-V)和振动-平动(V-T)能量转移速率的计算。在室温下CO2,CH4,CL2,N2和O2组成的多种混合气体中,振动模式能量转移速率的计算结果表明:对于多个振动模式所形成的声复合弛豫过程,各振动模式的声激发能可由V-V能量转移相互耦合后传递给具有最快V-T转移速率的最低振动频率振动模式,再通过该振动模式的V-T转移退激发形成主弛豫过程。这种选择最快转移路径的声激发量弛豫方式,造成了大多数可激发气体中声弛豫吸收谱的实测数据只存在一个吸收峰的现象。从而提供了一个可通过计算微观振动能量转移速率分析混合气体声弛豫过程形成机理的理论模型。
Abstract:
To research the correlation between vibrational energy transition rates and acoustic relaxation processes in excitable gases, the vibrational relaxation theory provided by Tanczos[J. Chem. Phys. 25, 439 (1956)] is applied to calculate the energy transition rates of Vibrational-Vibrational (V-V) and Vibrational-Translational (V-T) energy transfer in gas mixtures. The results of calculated vibrational energy transition rates for the multi-relaxation processes in various gas mixtures, consisting of carbon dioxide, methane, chlorine, nitrogen, and oxygen at room temperature, demonstrate that the acoustic energy stagnated in every vibrational mode is coupled with each other through V-V energy exchanges. The vibrational excitation energy will relax through the V-T de-excitation path of the lowest mode because of its fastest V-T transition rate, resulting in only one absorption peak can be measured for most of excitable gas mixtures. Thus, an effective model is provided to analyze how the vibrational energy transition rates affect the characteristics of acoustic relaxation processes and acoustic propagation in excitable gas mixtures.