Sparse orthogonal joint constrained multichannel non-negative matrix factorization algorithm for acoustic signal separation
-
摘要: 针对复杂环境下多通道声信号分离问题,提出稀疏正交联合约束多通道非负矩阵分解声信号分离方法。首先设计基于多通道扩展坂仓斋藤(Itakura-Saito,IS)散度的稀疏正交联合约束项构造代价函数,给出信号稀疏和信号正交约束辅助函数,实现代价函数最小化求解。然后通过迭代更新规则设计,得到稀疏正交优化的多通道非负矩阵分解基矩阵和系数矩阵,讨论了稀疏正交约束对基矩阵和系数矩阵稀疏性与连续性影响。最后基于多通道信号空间特性,进行了非负矩阵分解基聚类以获得多通道非负矩阵分解声信号的分离结果。双通道音频数据与四通道声学目标分离实验数据测试表明,对音频数据,所提算法在性能指标信号失真比(SDR)上提高了0.84dB,对于直升机声源数据,所提算法在SDR上提高了4.53dB。Abstract: Aiming at the problem of multichannel acoustic signal separation in complex environment, a sparse orthogonal joint constrained multichannel non-negative matrix factorization acoustic signal separation method is proposed. First, the cost function is constructed by sparse orthogonal joint constraints based on multichannel extended Itakura-Saito (IS) divergence, and auxiliary functions of signal sparse and signal orthogonal constraints are given to minimize the cost function. Then, through the design of iterative update rules, the basis matrix and coefficient matrix of multichannel non-negative matrix factorization for sparse and orthogonal optimization are obtained, and the influence of sparse orthogonal constraint on the sparsity and continuity of the basis matrix and coefficient matrix is discussed. Finally, based on the spatial characteristics of multichannel signals, non-negative matrix decomposition basis clustering is performed to obtain the separation results of multichannel Non-negative Matrix Factorization (NMF) acoustic signals. The experimental data tests of two-channel audio data and four-channel acoustic target separation show that the proposed algorithm improves the performance index Signal Distortion Ratio (SDR) by 0.84dB for audio data, and improves the SDR by 4.53dB for helicopter sound source data.
-
Keywords:
- Sparse /
- Orthogonality /
- Multichannel NMF /
- Acoustic signal separation
-
-
[1] Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput., 1995; 7(6):1129-1159
[2] Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Comput., 1997; 9(7):1483-1492
[3] 倪晋平, 马远良, 孙超. 用独立成份分析算法实现水声信号盲离用独立成份分析算法实现水声信号盲离. 声学学报, 2002; 27(4):321-326 [4] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999; 401(6755):788-791
[5] 李乐, 章毓晋. 基于双线性型的非负矩阵集分解基于双线性型的非负矩阵集分解. 计算机学报, 2009; 32(8):1536-1549 [6] Seung D, Lee L. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst., 2001; 13:556-562
[7] Smaragdis P, Brown J C. Non-negative matrix factorization for polyphonic music transcription. Applications of Signal Processing to Audio and Acoustics, 2003:177-180
[9] F'evotte C, Bertin N, Durrieu J L. Nonnegative matrix factorization with the Itakura-Saito divergence:With application to music analysis. Neural Comput., 2009; 21(3):793-830
[10] Hoyer P O. Nonnegative matrix factorization with sparseness constraints. J. Mach. Learn. Res., 2004; 5(9):1457-1469
[11] Parathai P, Woo W L, Dlay S S et al. Single-channel blind separation using L1-sparse complex non-negative matrix factorization for acoustic signals. J. Acoust. Soc. Am., 2015; 137(1):124-129
[12] 路成, 田猛, 周健, 王华彬, 陶亮. L1/2稀疏约束卷积非负矩阵分解的单通道语音增强方法. 声学学报, 2017; 42(3):377-384 [13] 葛宛营, 张天骐, 范聪聪, 张天. 噪声情况下采用稀疏非负矩阵分解与深度吸引子网络的人声分离算法. 声学学报, 2021; 46(1):55-66 [14] Li Z, Wu X D, Peng H. Nonnegative matrix factorization on orthogonal subspace. Pattern Recognit. Lett., 2010; 31(9):905-911
[15] Yang Z, Laaksonen J. Multiplicative updates for non-negative projections. Neurocomputing, 2007; 71(1-3):363-373
[16] Duong N Q K, Vincent E, Gribonval R. Under-determined reverberant audio source separation using a full-rank spatial covariance model. IEEE Trans. Audio Speech Lang. Process., 2010; 18(7):1830-1840
[17] Ozerov A, Fevotte C. Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE Trans. Audio Speech Lang. Process., 2010; 18(3):550-563
[18] Sawada H, Kameoka H, Araki S et al. Multichannel extensions of non-negative matrix factorization with complex-valued data. IEEE Trans. Audio Speech Lang. Process., 2013; 21(5):971-982
[19] Nikunen J, Virtanen T. Multichannel audio separation by direction of arrival based spatial covariance model and non-negative matrix factorization. Icassp IEEE International Conference on Acoustics, 2014:6677-6681
[20] Nikunen J, Virtanen T. Direction of arrival based spatial covariance model for blind sound source separation. IEEE ACM Trans. Audio Speech Lang. Process., 2014; 22(3):727-739
[21] Al Tmeme A, Woo W L, Dlay S S et al. Underdetermined reverberant acoustic source separation using weighted full-rank nonnegative tensor models. J. Acoust. Soc. Am., 2015; 138(6):3411-3426
[22] Kitamura D, Ono N, Sawada H et al. Determined blind source separation unifying independent vector analysis and nonnegative matrix factorization. IEEE ACM Trans. Audio Speech Lang. Process., 2016; 24(9):1626-1641
[23] Mitsufuji Y, Uhlich S, Takamune N et al. Multichannel non-negative matrix factorization using banded spatial covariance matrices in wavenumber domain. IEEE ACM Trans. Audio Speech Lang. Process., 2019; 28:49-60
[24] Sekiguchi K, Bando Y, Nugraha A A et al. Fast multichannel nonnegative matrix factorization with directivity-aware jointly-diagonalizable spatial covariance matrices for blind source separation. IEEE ACM Trans. Audio Speech Lang. Process., 2020; 28:2610-2625
[25] 韩东, 盖杉. L1范数约束正交子空间非负矩阵分解. 计算机系统应用, 2018; 27(9):205-209 [26] Vincent E, Gribonval R, F'evotte C. Performance measurement in blind audio source separation. IEEE Trans. Audio Speech Lang. Process., 2006; 14(4):1462-1469
[27] Le Roux J, Wisdom S, Erdogan H et al. SDR-half-baked or well done? ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019:626-630
[28] Emiya V, Vincent E, Harlander N et al. Subjective and objective quality assessment of audio source separation. IEEE Trans. Audio Speech Lang. Process., 2011; 19(7):2046-2057
-
期刊类型引用(3)
1. 闫雪姣,陈娟. 混合型电子音乐信号重叠时频自动化分离系统设计. 电子设计工程. 2024(15): 180-184 . 百度学术
2. 吴玮玮. 汽车组合仪表有意电磁干扰空时域联合分离系统设计. 计算机测量与控制. 2024(07): 252-259 . 百度学术
3. 谢小军. 基于信道估计的多通道通信信号盲分离方法. 自动化技术与应用. 2024(11): 93-98 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 181
- HTML全文浏览量: 14
- PDF下载量: 25
- 被引次数: 6