Source depth estimation using frequency domain interference structure in deep ocean bottom bounce area
-
摘要:
提出了一种基于深海海底声反射区声场频域干涉结构特征的水下宽带近海面声源深度估计方法。该方法通过建立深海海底声反射区到达声场结构模型, 推导了垂直阵接收信号波束输出幅度谱的近似表达式, 利用幅度谱与声源深度和垂直到达角(俯仰角)之间的周期变化关系, 将接收信号映射到深度−垂直到达角域中, 实现了对宽带声源的深度估计。仿真实验与影响因素分析验证了该原理的正确性, 南海实验结果表明: 利用阵长为64 m的垂直短阵接收标定深度为50 m和100 m的双弹信号, 得到的深度估计结果同实际声源深度吻合较好, 估计误差不超过7%, 验证了该方法的有效性。
Abstract:An underwater broadband near-surface source depth estimation method based on the frequency domain interference structure characteristics of the deep ocean bottom bounce area is proposed. In this method, the approximate expression of the output amplitude spectrum of the vertical array received signal beam is derived by establishing the structure model of the arrival sound field in deep ocean bottom bounce area. By utilizing the periodic oscillation relationship between the amplitude spectrum and the source depth and the vertical angle of arrival, the received signal is mapped to the depth-vertical angle of arrival domain, which can be used to estimate the depth of broadband sources. The validity of the method is verified by simulation and analysis of influencing factors. The results of the South China Sea experiments show that the depth estimation results are in good agreement with the actual source depths by using the vertical short array with 64 m to receive the double explosive bomb signals with calibration depths of 50 m and 100 m respectively, and the estimation error does not exceed 7%, which verifies the effectiveness of the method.
-
Key words:
- Bottom bounce area /
- Interference structure /
- Near-surface source /
- Depth estimation /
- Vertical array
-
表 1 不同声源的深度估计结果
声源 声源1 声源2 声源3 实际距离 (km) 20 10 15 实际深度 (m) 50 150 250 估计垂直到达角 (°) −23.8, 22.1 −41.7, 39.3 −31.4, 28.1 估计深度 (m) 46.1, 45.2 145.9, 144.3 239.1, 235.3 估计误差大小 7.8%, 9.6% 2.7%, 3.8% 4.4%, 5.9% 表 2 某时刻接收阵阵元校准深度
阵元号数 校准深度 (m) 阵元号数 校准深度 (m) 阵元号数 校准深度 (m) 阵元号数 校准深度 (m) 1 0 9 18.3 17 35.8 25 51.6 2 2.9 10 20.2 18 37.7 26 53.4 3 4.8 11 22.6 19 39.6 27 55.2 4 7.2 12 25.0 20 41.7 28 56.9 5 9.6 13 27.4 21 43.7 29 58.7 6 12.0 14 29.6 22 45.8 30 60.9 7 14.4 15 31.7 23 47.7 31 62.3 8 16.3 16 34.0 24 49.7 32 64.1 表 3 存在不同信号弹时的声源深度估计结果
声源 S50 S100 S50+S100(按能量大小排序) 实际距离 (km) 11.6 21.8 11.6, 21.8 标称深度 (m) 50 100 50, 100 二次脉动估计深度 (m) 49.0 101.9 49.0, 101.9 估计垂直到达角 (°) −32, 31 −17, 17 −4, −32, 30, 17 估计深度 (m) 48.1, 47.6 95.4, 91.3 4.9, 46.8, 47.1, 3.8 估计误差大小 1.8%, 2.9% 6.4%, 10.4% 95.2%, 4.5%, 3.9%, 96.3% 表 4 存在S50和S100信号弹时的声源深度估计结果
声源 S50+S100 (按能量大小排序) 实际距离 (km) 11.6, 21.8 标称深度 (m) 50, 100 二次脉动估计深度 (m) 49.0, 101.9 估计垂直到达角 (°) −32, 30, −17, 16 估计深度 (m) 46.8, 47.1, 94.7, 94.7 估计误差大小 4.5%, 3.9%, 7.0%, 7.0% -
[1] Gaul R D, Knobles D P, Shooter J A, et al. Ambient noise analysis of deep-ocean measurements in the Northeast Pacific. IEEE J. Oceanic Eng., 2007; 32(2): 497—512 doi: 10.1109/joe.2007.891885 [2] Fizell R G, Wales S C. Source localization in range and depth in an Arctic environment. J. Acoust. Soc. Am., 1985; 78(S1): S57—S58 doi: 10.1121/1.2022889 [3] Tran J M Q D, Hodgkiss W S. Matched-field processing of 200-Hz continuous wave (cw) signals. J. Acoust. Soc. Am., 1991; 89(2): 745—755 doi: 10.1121/1.1894634 [4] Bucker H P. Use of calculated sound fields and matched-field detection to locate sound sources in shallow water. J. Acoust. Soc. Am., 1976; 59(2): 368—373 doi: 10.1121/1.380872 [5] 陈连荣, 彭朝晖, 南明星. 高斯射线束方法在深海匹配场定位中的应用. 声学学报, 2013; 38(6): 715—723 doi: 10.15949/j.cnki.0371-0025.2013.06.020 [6] Hinich M J. Maximum-likelihood signal processing for a vertical array. J. Acoust. Soc. Am., 1973; 54(2): 499—503 doi: 10.1121/1.1913606 [7] Westwood E K. Broadband matched-field source localization. J. Acoust. Soc. Am., 1992; 91(5): 2777—2789 doi: 10.1121/1.402958 [8] Shang E C. Environmental mismatching effects on source localization processing in mode space. J. Acoust. Soc. Am., 1991; 89(5): 2285—2290 doi: 10.1121/1.400919 [9] Richardson A M, Nolte L W. A posteriori probability source localization in an uncertain sound speed, deep ocean environment. J. Acoust. Soc. Am., 1991; 89(5): 2280—2284 doi: 10.1121/1.400918 [10] Krolik J L. Matched-field minimum variance beamforming in a random ocean channel. J. Acoust. Soc. Am., 1992; 92(3): 1408—1419 doi: 10.1121/1.403935 [11] 杨坤德, 李辉, 段睿. 深海声传播信道和目标被动定位研究现状. 中国科学院院刊, 2019; 34(03): 314—320 doi: 10.16418/j.issn.1000-3045.2019.03.009 [12] Tiemann C O, Thode A M, Straley J, et al. Three-dimensional localization of sperm whales using a single hydrophone. J. Acoust. Soc. Am., 2006; 120(4): 2355—2365 doi: 10.1121/1.2335577 [13] Lei Z X, Yang K D, Ma Y L. Passive localization in the deep ocean based on cross-correlation function matching. J. Acoust. Soc. Am., 2016; 139(6): 196—201 doi: 10.1121/1.4954053 [14] 孙梅, 周士弘. 大深度接收时深海直达波区的复声强及声线到达角估计. 物理学报, 2016; 65(16): 134—143 doi: 10.7498/aps.65.164302 [15] 高飞, 孙磊. 基于首达波与次达波到达时差的深海浅层移动声源定位. 兵工学报, 2018; 39(11): 6 doi: 10.3969/j.issn.1000-1093.2018.11.019 [16] Zurk L M, Boyle J K, Shibley J. Depth-based passive tracking of submerged sources in the deep ocean using a vertical line array. 2013 Asilomar Conference on Signals, Systems and Computers, IEEE, Pacific Grove, CA, USA, 2013: 2130-2132 [17] McCargar R, Zurk L M. Depth-based signal separation with vertical line arrays in the deep ocean. J. Acoust. Soc. Am., 2013; 133(4): 320—325 doi: 10.1121/1.4795241 [18] Kniffin G P, Boyle J K, Zurk L M, et al. Performance metrics for depth-based signal separation using deep vertical line arrays. J. Acoust. Soc. Am., 2016; 139(1): 418—425 doi: 10.1121/1.4939740 [19] Duan R, Yang K D, Ma Y L, et al. Moving source localization with a single hydrophone using multipath time delays in the deep ocean. J. Acoust. Soc. Am., 2014; 136(2): 159—165 doi: 10.1121/1.4890664 [20] Duan R, Yang K D, Li H, et al. A performance study of acoustic interference structure applications on source depth estimation in deep water. J. Acoust. Soc. Am., 2019; 145(2): 903—916 doi: 10.1121/1.5091100 [21] Yang K D, Xu L Y, Yang Q L, et al. Striation-based source depth estimation with a vertical line array in the deep ocean. J. Acoust. Soc. Am., 2018; 143(1): 8—12 doi: 10.1121/1.5020267 [22] 王文博, 苏林, 王臻, 等. 利用宽带声场频率−掠射角干涉结构的深海直达声区目标深度估计方法. 声学学报, 2021; 46(2): 161—170 doi: 10.15949/j.cnki.0371-0025.2021.02.001 [23] 唐帅, 笪良龙, 徐国军, 等. 基于波导不变量的深海船舶噪声特征研究. 船舶力学, 2018; 22(7): 888—895 doi: 10.3969/j.issn.1007-7294.2018.07.013 [24] 李倩倩, 李整林, 张仁和. 利用波导不变性解释深海中的干涉现象. 声学技术, 2011; 30(S3): 13—15 [25] 翁晋宝, 杨燕明. 深海中利用单水听器的影区声源无源测距测深方法. 声学学报, 2018; 43(6): 905—914 doi: 10.15949/j.cnki.0371-0025.2018.06.004 [26] 朱方伟, 郑广赢, 刘福臣. 基于深海海底反射区匹配到达结构的声源深度估计方法. 哈尔滨工程大学学报, 2021; 42(10): 1510—1517 doi: 10.11990/jheu.202007001 [27] 刘伯胜, 雷家煜. 水声学原理. 哈尔滨: 哈尔滨工程大学出版社, 2010 -