干扰背景非瑞利混响参数估计
Parameter estimation for non-Rayleigh reverberation under background interference
-
摘要: 提出了一种基于模糊统计归一化处理(FSNP)的K分布混响形状参数自适应估计方法。该方法首先对混响进行归一化处理, 然后对不同归一化处理强度的处理数据进行形状参数估计, 最后, 取适中归一化处理强度数据形状参数估计值作为最终估计值。仿真结果表明, 所提方法在参杂干扰背景和均匀背景下, 都具有很好的参数估计性能。实测带宽4000 Hz声呐同区域混响参数估计结果显示, 混响参杂强干扰时, 所提方法形状参数估计值的最小值、最大值、标准差、极差分别为1.13, 25.76, 4.36, 24.63, 混响均匀时分别为2.54, 20.78, 3.84, 18.24。相比于传统抑制干扰和均匀背景参数估计算法, 无论是同区域参杂干扰混响, 还是均匀混响, 所提方法参数估计结果的标准差和极差都明显下降。Abstract: An adaptive K-distribution shape parameter estimation scheme based on fuzzy statistical normalization processing (FSNP) is proposed. In the proposed scheme, the reverberation is normalized from strongly to slightly by the FSNP method firstly. Then the shape parameters are estimated based on the different strength normalized data sets. Lastly, the estimated shape parameter value based on the proper normalized data is chosen as the final estimated value. Simulation results show that the proposed method has good shape parameter estimation performance for both inhomogeneous and homogenous K-distributed reverberation. Estimation results based on the same region reverberation from an active sonar with bandwidth of 4000 Hz show that the minimum value, the maximum value, the standard deviation, and the range of the estimated shape parameter values are 1.13, 25.76, 4.36, 24.63 respectively for inhomogeneous reverberation, and 2.54, 20.78, 3.84, 18.24 respectively for homogeneous reverberation. The standard deviation and the range of the estimated shape parameter values decrease significantly compared with the traditional shape parameter estimation methods for both inhomogeneous and homogeneous reverberation.