Target cross-track labeled hierarchical management for tracking before detection
-
摘要:
针对检测前跟踪算法无法提供目标航迹标签以及传统算法在轨迹交叉情况下批次编号管理混乱的问题, 提出了一种标记关联的航迹管理方法。该方法为各个目标的方位航迹标记不重复的标签, 并针对标签多伯努利算法非共轭先验的问题, 采用将标签多伯努利分布逼近
$\delta $ -广义标签多伯努利分布的方法进行解决。另外还提出一种辅助门限进行分层逐级更新的方法, 实现了对不同的航迹赋予不同的标签, 解决了方位交叉情况下轨迹中断、目标跟丢和错跟的问题。仿真及海试试验表明, 该方法的平均误差稳定且接近为0, 定位精度高且轨迹连续清晰, 不仅能在目标轨迹交叉时进行准确跟踪, 还能实现对多目标数的精准估计, 为基于声呐阵的水下目标态势感知方法提供了新的技术支持。Abstract:In order to solve the problem that the target track label cannot be provided by the track-before-detect algorithm and the batch number management is confused by the traditional algorithm in the case of trajectory intersection, a track management method based on label association is proposed. This method marks the non-overlapping labels for each target’s azimuth track, and aims at the problem of the non-conjugate prior of the labeled multi-Bernoulli algorithm. The method of approximating label multi-Bernoulli distribution to
$\delta $ -generalized labeled multi-Bernoulli distribution is used to solve this problem. In addition, an auxiliary threshold hierarchical updating method is proposed to assign different labels to different tracks, which solves the problem of track interruption, target loss and wrong tracking in the case of azimuth intersection. The simulation and sea test results show that the average error is stable and close to 0. The positioning accuracy is high and the trajectory is continuous and clear. Moreover, it can also achieve accurate estimation of the target number. It provides a new technical support for underwater target situation awareness method based on sonar array.-
Key words:
- Multi-target tracking /
- Track-before-detect /
- Labeled multi-Bernoulli /
- Track management
-
表 1 多目标运动状态
目标编号 初始方位角 (°) 新生时间 (s) 消亡时间 (s) 1 135 1 200 2 79.84 25 200 3 225 1 200 4 303.69 1 200 表 2 不同算法的平均迭代时间
算法名称 平均迭代时间 (s) LMB 1.4064 M-LMB-TBD 0.3060 RB-PF 0.3826 -
[1] 谢志华, 蒋丞, 吴俊超, 等. 水下目标多平台协同定位和跟踪方法. 声学学报, 2021; 46(6): 1028—1038 doi: 10.15949/j.cnki.0371-0025.2021.06.022 [2] Bar-Shalom Y, Fortman T E, Cable P G. Tracking and data association. J. Acoust. Soc. Am., 1990; 87(2): 918—919 doi: 10.1121/1.398863 [3] Mahler R, Ebrary I. Statistical multisource-multitarget information fusion. Massachusetts: Artech House, 2007 [4] Ronald P S. Advances in statistical multisource-multitarget information fusion. Massachusetts: Artech House, 2014 [5] Vo B N, Ma W K. A closed-form solution to the probability hypothesis density filter. 7th International Conference on Information Fusion, Philadelphia, PA, USA, 2005 [6] 申屠晗, 薛安克, 周治利. 多传感器高斯混合PHD融合多目标跟踪方法. 自动化学报, 2017; 43(6): 1028—1037 doi: 10.16383/j.aas.2017.c170091 [7] 齐海明, 张安清. 基于PHD滤波的多目标跟踪及应用研究. 舰船电子工程, 2018; 38(4): 23—26, 39 doi: 10.3969/j.issn.1672-9730.2018.04.007 [8] 林再平, 周一宇, 安玮. 基于势概率假设密度滤波的检测前跟踪新算法. 红外与毫米波学报, 2013; 32(5): 437—443 doi: 10.3724/SP.J.1010.2013.00437 [9] Vo B T, Vo B N, Cantoni A. Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Trans. Signal Process., 2007; 55(7): 3553—3567 doi: 10.1109/TSP.2007.894241 [10] 董阁, 曹政, 郭良浩, 等. 利用频域β-warping变换的浅海修正纯方位目标运动分析方法. 声学学报, 2019; 44(4): 513—522 doi: 10.15949/j.cnki.0371-0025.2019.04.012 [11] 金盛龙, 李宇, 黄海宁. 水下多目标方位的联合检测与跟踪. 声学学报, 2019; 44(4): 503—512 doi: 10.15949/j.cnki.0371-0025.2019.04.011 [12] Liu R, Fan H Q, Xiao H T. Labeled multi-bernoulli filter joint detection and tracking of radar targets. Appl. Sci. -Basel, 2019; 9(19): 4187 doi: 10.3390/app9194187 [13] Vo B T, Vo B N. Labeled random finite sets and multi-object conjugate priors. IEEE Trans. Signal Process., 2013; 61(13): 3460—3475 doi: 10.1109/TSP.2013.2259822 [14] Rathnayake T, Gostar A K, Hoseinnezhad R, et al. Labeled multi-Bernoulli track-before-detect for multi-target tracking in video. 18th International Conference on Information Fusion, Washington, DC, USA, 2015: 1353—1358 [15] 殷敬伟, 高新博, 韩笑, 等. 稀疏贝叶斯学习水声信道估计与脉冲噪声抑制方法. 声学学报, 2021; 46(6): 813—824 doi: 10.15949/j.cnki.0371-0025.2021.06.004 [16] 郭启超, 李风华, 彭朝晖, 等. 使用稀疏贝叶斯学习的水声多途信道盲估计. 声学学报, 2021; 46(6): 789—799 doi: 10.15949/j.cnki.0371-0025.2021.06.002 [17] 刘彪, 贾宁, 黄建纯, 等. 最优路径搜索压缩感知水声通信信道估计. 声学学报, 2022; 47(3): 321—328 doi: 10.15949/j.cnki.0371-0025.2022.03.006 [18] 王燕, 苏钰, 齐滨, 等. 单基阵三维纯方位水下信标声学定位方法. 声学学报, 2021; 46(3): 375—386 doi: 10.15949/j.cnki.0371-0025.2021.03.006 [19] Vo B N, Vo B T, Phung D. Labeled random finite sets and the Bayes multi-target tracking Filter. IEEE Trans. Signal Process., 2014; 62(24): 6554—6567 doi: 10.1109/TSP.2014.2364014 [20] Vo B N, Vo B T, Pham N T, et al. Joint detection and estimation of multiple objects from image observations. IEEE Trans. Signal Process., 2010; 58(10): 5129—5141 doi: 10.1109/TSP.2010.2050482 [21] Choppala P B, Teal P D, Frean M R, et al. Adapting the multi-Bernoulli filter to phased array observations using MUSIC as pseudo-likelihood. 17th International Conference on Information Fusion, Salamanca, Spain, 2014 [22] 陈唯实, 闫军, 李敬. 基于Rao-Blackwellized蒙特卡罗数据关联的检测跟踪联合优化. 北京航空航天大学学报, 2018; 44(4): 700—708 doi: 10.13700/j.bh.1001-5965.2017.0228 [23] 彭华甫, 黄高明, 田威, 等. 标签多伯努利机动目标跟踪与分类算法. 西安交通大学学报, 2019; 53(2): 157—162, 178 doi: 10.7652/xjtuxb201902021 [24] 单甘霖, 张凯, 吉兵. 基于指标融合的跟踪算法性能评估度量标准. 仪器仪表学报, 2014; 35(10): 2341—2347 doi: 10.19650/j.cnki.cjsi.2014.10.025 [25] 兰军. 圆弧阵的水平指向性和综合. 声学学报, 1988; 13(4): 284—290 doi: 10.15949/j.cnki.0371-0025.1988.04.008 [26] 赵冬冬, 李付增, 陈朋, 等. 前视声呐圆弧接收阵列结构优化设计. 声学学报, 2022; 47(3): 329—338 doi: 10.15949/j.cnki.0371-0025.2022.03.011 -