Frequency-shift compensation localization method for large aperture horizontal array in shallow water
-
摘要:
浅海波导中简正波干涉使得声场水平相关随距离出现振荡, 利用声信号水平距离−频率干涉规律推导了不同阵元接收信号间的频移补偿关系式, 结合大孔径阵列阵元空间分布离散度高的特点提出适用于声源频谱缓变信号的定位方法。利用频移补偿量随声源位置的变化, 将两两阵元组合输出的模糊度平面叠加实现水平二维平面定位。仿真结果表明方法定位性能良好, 对环境参数失配宽容性好。频移补偿后的线性相位关系有效提高了接收信号间的相关性, 进而提升大孔径阵列的处理增益。阵列的孔径优势提高了空间分辨能力, 模糊度平面峰值−背景比高。海试数据验证表明, 10~80 km测距结果平均相对偏差为5.68%, 二维平面内定位结果平均距离偏差为0.78 km。
Abstract:The interference of different normal mode makes the horizontal longitudinal correlation of sound field oscillate. The frequency-shift compensation relationship between the received signals at different positions is derived by using the horizontal distance-frequency interference structure, combined with the characteristics of high dispersion of spatial distribution of large aperture array elements, a localization method suitable for slowly varying spectrum signal is proposed. By using the change of the frequency-shift compensation with the position of sound source, the ambiguity plane of two elements is superimposed to realize the horizontal two-dimensional plane localization. The simulation results show that the method has good localization performance and good tolerance to environmental parameter mismatch. The linear phase relationship after frequency-shift compensation effectively improves the correlation between the received signals, thereby improving the processing gain of the large aperture array. The aperture advantage of the array improves the spatial resolution, and the peak-to-background ratio of the ambiguity plane is high. Sea trial data validation shows that the average relative deviation of 10−80 km ranging results is 5.68% and the average distance deviation of localization results in two-dimensional plane is 0.78 km.
-
[1] Zhang B, Li F H, Li Z L, et al. Transverse horizontal spatial coherence in shallow water. 2nd Franco-Chinese Acoustic Conference, Le Mans Univ, Le Mans, France, 2018: 283 [2] Bucker H P. Use of calculated sound fields and matched-field detection to locate sound source in shallow-water. J. Acoust. Soc. Am., 1976; 59(2): 368—373 doi: 10.1121/1.380872 [3] Shin K C, Kim J S. Matched field processing with contrast maximization. J. Acoust. Soc. Am., 2005; 118(3): 1526—1533 doi: 10.1121/1.1993131 [4] Krolik J L. Matched-field minimum varivance beamforming in a random ocean channel. J. Acoust. Soc. Am., 1992; 92(3): 1408—1419 doi: 10.1121/1.403935 [5] Baggeroer A B, Kuperman W A, Mikhalevsky P N. An overview of matched-field methods in ocean acoustics. IEEE J. Oceanic Eng., 1993; 18(4): 401—424 doi: 10.1109/48.262292 [6] Lee S, Makris N C. The array invariant. J. Acoust. Soc. Am., 2006; 119(1): 336—351 doi: 10.1121/1.2139074 [7] Byun G, Song H C, Kim J S, et al. Real-time tracking of a surface ship using a bottom-mounted horizontal array. J. Acoust. Soc. Am., 2018; 144(4): 2375—2382 doi: 10.1121/1.5064791 [8] 王宇杰, 迟骋, 李宇, 等. 格林函数解卷积处理的阵不变量浅海无源定位. 声学学报, 2022; 47(1): 45—52 doi: 10.15949/j.cnki.0371-0025.2022.01.005 [9] Niu H Q, Reeves E, Gerstoft P. Source localization in an ocean waveguide using supervised machine learning. J. Acoust. Soc. Am., 2017; 142(3): 1176—1188 doi: 10.1121/1.5000165 [10] Wang Y, Peng H. Underwater acoustic source localization using generalized regression neural network. J. Acoust. Soc. Am., 2018; 143(4): 2321—2331 doi: 10.1121/1.5032311 [11] Yang T C. Beam intensity striations and applications. J. Acoust. Soc. Am., 2003; 113(3): 1342—1352 doi: 10.1121/1.1534604 [12] Song W H, Gao D Z, Li X L, et al. Waveguide invariant in a gradual range-and-azimuth varying waveguide. JASA Exp. Lett., 2022; 2(5): 056002 doi: 10.1121/10.0010489 [13] 李启虎. 水下目标被动测距的一种新方法: 利用波导不变量提取目标距离信息. 声学学报, 2015; 40(2): 138—143 doi: 10.15949/j.cnki.0371-0025.2015.02.004 [14] Turgut A, Orr M, Rouseff D. Broadband source localization using horizontal-beam acoustic intensity striations. J. Acoust. Soc. Am., 2010; 127(1): 73—83 doi: 10.1121/1.3257211 [15] 余赟, 袁延艺, 刘雄厚. 利用波导不变量进行运动单线阵的无源测距测速. 声学学报, 2017; 42(6): 661—668 doi: 10.15949/j.cnki.0371-0025.2017.06.003 [16] 王朋, 郑胜家, 黄勇, 等. 浅海运动目标波束域波导不变量测距方法研究. 声学学报, 2015; 40(6): 789—798 doi: 10.15949/j.cnki.0371-0025.2015.06.004 [17] 徐国军, 赵建昕, 笪良龙, 等. 频率自适应最优权重阵列干涉条纹处理技术. 声学学报, 2017; 42(3): 257—266 doi: 10.15949/j.cnki.0371-0025.2017.03.001 [18] 任云, 戚聿波, 周士弘, 等. 声强谱频移补偿的波导不变量和距离估计方法. 声学学报, 2014; 39(3): 319—323 doi: 10.15949/j.cnki.0371-0025.2014.03.002 [19] 祝献, 彭玲, 王忠康, 等. 利用波导不变量的水平线阵被动估距方法研究. 信号处理, 2012; 28(11): 1607—1612 doi: 10.3969/j.issn.1003-0530.2012.11.017 [20] 高大治, 翟林, 王好忠, 等. 利用线谱起伏实现目标测距. 声学学报, 2017; 42(6): 669—676 doi: 10.15949/j.cnki.0371-0025.2017.06.004 [21] Guo L H, Gong Z X, Wu L X. Space and time coherence of acoustic field in shallow water. Chin. Phys. Lett., 2001; 18(10): 1366—1368 doi: 10.1088/0256-307X/18/10/321 [22] 苏晓星, 张仁和, 李风华. 利用波导不变性提高声场的水平纵向相关. 声学学报, 2006; 31(4): 305—309 doi: 10.3321/j.issn:0371-0025.2006.04.003 [23] Tracey B H. Statistical description of matched field processing ambiguity surfaces. J. Acoust. Soc. Am., 2005; 118(3): 1372—1380 doi: 10.1121/1.2000750 [24] Yoo K, Yang T C. Broadband source localization in shallow water in the presence of internal waves. J. Acoust. Soc. Am., 1999; 106(6): 3255—3269 doi: 10.1121/1.428179 [25] 沈远海, 马远良, 屠庆平, 等. 浅水声速剖面用经验正交函数(EOF)表示的可行性研究. 应用声学, 1999; 18(2): 21—25 doi: 10.3969/j.issn.1000-310X.1999.02.005 [26] Del Balzo D R, Feuillade C, Rowe M M. Effects of water-depth mismatch on matched-field localization in shallow water. J. Acoust. Soc. Am., 1988; 83(6): 2180—2185 doi: 10.1121/1.396346 [27] 何琪, 宫在晓, 李风华, 等. 浅海大孔径时钟弱同步阵列的信道匹配阵形校准. 声学学报, 2023; 48(1): 5—15 doi: 10.15949/j.cnki.0371-0025.2023.01.008 -
计量
- 文章访问数: 299
- 被引次数: 0