EI / SCOPUS / CSCD 收录

中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Y型夹心式压电超声变压器的设计

许龙 赵淑婷

许龙, 赵淑婷. Y型夹心式压电超声变压器的设计[J]. 声学学报, 2023, 48(6): 1252-1259. doi: 10.12395/0371-0025.2022057
引用本文: 许龙, 赵淑婷. Y型夹心式压电超声变压器的设计[J]. 声学学报, 2023, 48(6): 1252-1259. doi: 10.12395/0371-0025.2022057
XU Long, ZHAO Shuting. Design of Y-type sandwich piezoelectric ultrasonic transformer[J]. ACTA ACUSTICA, 2023, 48(6): 1252-1259. doi: 10.12395/0371-0025.2022057
Citation: XU Long, ZHAO Shuting. Design of Y-type sandwich piezoelectric ultrasonic transformer[J]. ACTA ACUSTICA, 2023, 48(6): 1252-1259. doi: 10.12395/0371-0025.2022057

Y型夹心式压电超声变压器的设计

doi: 10.12395/0371-0025.2022057
基金项目: 国家自然科学基金项目(12074354)资助
详细信息
    通讯作者:

    许龙, xulong250864@163.com

  • PACS: 43.35, 43.38, 43.40

Design of Y-type sandwich piezoelectric ultrasonic transformer

  • 摘要:

    提出了Y型夹心式压电超声变压器, 基于耦合振动理论和力电类比原理, 建立了变压器的机电等效电路模型, 推导得到了其共振/反共振频率方程、电压增益和功率增益表达式。通过等效电路法、有限元仿真和实验研究了该变压器的功率传输特性和机电转换特性。结果表明, 在共振模式下, Y型夹心式压电超声变压器的输入机电阻抗最小, 电压增益和功率增益最大, 有望作为双通道压电变压器应用于电子领域。

     

  • 图 1  Y-SPT结构示意图

    图 2  Y-SPT工作原理图

    图 3  中心正三棱块内部微元取向示意图

    图 4  Y-SPT的机电等效电路

    图 5  输入机电阻抗−频率响应曲线 (a) 计算结果; (b) 实验测量结果

    图 6  Y-SPT纵向耦合共振振型图(f = 21820 Hz)

    图 7  ECM和FEM计算的电压增益频率响应曲线

    图 8  电压增益测量的实验装置

    图 9  实验测量的电压增益频率响应曲线

    图 10  功率增益频率响应曲线 (a) 计算结果; (b) 实验测量结果

  • [1] Jolani F, Yu Y, Chen Z. A planar magnetically coupled resonant wireless power transfer system using printed spiral coils. IEEE Antennas Wirel. Propag. Lett, 2014; 13(1): 1648—1651 doi: 10.1109/LAWP.2014.2349481
    [2] Huang X, Guo J, Wen F, et al. Output power stabilization of wireless power transfer system with multiple transmitters. IET Power Electron., 2016; 9(7): 1374—1380 doi: 10.1049/iet-pel.2015.0577
    [3] Rosen C A. Ceramic transformers and filters. Proceedings of the Electronic Components Symposium, 1956: 205—211
    [4] Falimiaramanana D J, Ratolojanahary F E, Lefebvre J E, et al. 2-D modeling of Rosen-type piezoelectric transformer by means of a polynomial approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2020; 67(8): 1701—1714 doi: 10.1109/TUFFC.2020.2975647
    [5] Flynn A M, Sanders S R. Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers. IEEE Trans. Power Electron., 2002; 17(1): 8—14 doi: 10.1109/63.988662
    [6] Kweon S H, Kazuki T, Kanda K, et al. Piezoelectric PZT thin-film transformers with a ring-dot structure. Jpn. J. Appl. Phys., 2020; 59: SPPD09 doi: 10.35848/1347-4065/abb4be
    [7] Forrester J, Li L, Davidson J N, et al. Equivalent circuit parameter extraction of low-capacitance high-damping PTs. Electron. Lett., 2020; 56(7): 347—350 doi: 10.1049/el.2019.3887
    [8] Shao W W, Chen L J, Pan C L, et al. Power density of piezoelectric transformers improved using a contact heat transfer structure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2012; 59(1): 73—81 doi: 10.1109/TUFFC.2012.2157
    [9] Chen S E, Gunawan H, Wu C C. An electromechanical model for clamped-edge bimorph disk type piezoelectric transformer utilizing Kirchhoff thin plate theory. Sensors, 2022; 22(6): 2237 doi: 10.3390/s22062237
    [10] Ryu M, Choi S, Lee S, et al. A new piezoelectric transformer driving topology for universal input AC/DC adapter using a constant frequency PWM control. 21st Annual IEEE Applied Power Electronics Conference and Exposition, IEEE, Dallas, TX, 2006
    [11] Yang S, Chen S, Tsai C, et al. Fabrication of high-power piezoelectric transformers using lead-free ceramics for application in electronic ballasts. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2013; 60(2): 408—413 doi: 10.1109/TUFFC.2013.2577
    [12] Yuanmao Y, Cheng K W E, Ding K. A Novel method for connecting multiple piezoelectric transformer converters and its circuit application. IEEE Trans. Power Electron., 2012; 27(4): 1926—1935 doi: 10.1109/TPEL.2011.2171007
    [13] Barham O M, Mirzaeimoghri M, DeVoe D L. Piezoelectric disc transformer modeling utilizing extended Hamilton’s principle. IEEE Trans. Power Electron., 2019; 34(7): 6583—6592 doi: 10.1109/TPEL.2018.2877699
    [14] Lin R L, Lee F C, Baker E M, et al. Inductor-less piezoelectric transformer electronic ballast for linear fluorescent lamp. 16th Annual IEEE Applied Power Electronics Conference and Exposition, IEEE, Anaheim, CA, USA 2001; 2: 664—669
    [15] 周志勇, 陈涛, 董显林. 超高居里温度钙钛矿层状结构压电陶瓷研究进展. 无机材料学报, 2018; 33(3): 251—258 doi: 10.15541/jim20170265
    [16] Hosono Y, Yamashita Y, Sakamoto H, et al. Dielectric and piezoelectric properties of Pb (In1/2Nb1/2) O3–Pb (Mg1/3Nb2/3) O3–PbTiO3 ternary ceramic materials near the morphotropic phase boundary. Jpn. J. Appl. Phys., 2003; 42(2R): 535—538 doi: 10.1143/JJAP.42.535
    [17] Lin S, Cao H, Qiao X. Wireless power transmission based on sandwiched composite piezoelectric transducers in length extensional vibration. IEEE Trans. Power Electron., 2016; 31(9): 6134—6143 doi: 10.1109/TPEL.2015.2502586
    [18] 林书玉, 张福成, 郭孝武. 超声频矩形六面体的三维耦合振动. 声学学报, 1991; 16(2): 91—97 doi: 10.15949/j.cnki.0371-0025.1991.02.002
    [19] Mori E, Itoh K, Imamura A. Analysis of a short column vibrator by apparent elasticity method and its application. Ultrasonics International Conference, IPC Scince & Technology Press, 1977: 262—266
    [20] Xu L, Lin S, Hu W. Optimization design of high power ultrasonic circular ring radiator in coupled vibration. Ultrasonics, 2011; 51(7): 815—823 doi: 10.1016/j.ultras.2011.03.010
    [21] 梁召峰, 莫喜平, 周光平. 超声管形振子的振动分析. 声学学报, 2011; 36(4): 369—376 doi: 10.15949/j.cnki.0371-0025.2011.04.004
    [22] 许龙, 周锦程, 常燕, 等. 二维振动方向变换器的耦合振动及其等效电路. 声学学报, 2018; 43(5): 786—792 doi: 10.15949/j.cnki.0371-0025.2018.05.008
    [23] Tsujino J, Ueoka T. Characteristics of large capacity ultrasonic complex vibration sources with stepped complex transverse vibration rods. Ultrasonics, 2004; 42(1-9): 93—97 doi: 10.1016/j.ultras.2004.02.010
    [24] Tsujino J, Harada Y, Ihara S, et al. Configurations of high-frequency ultrasonics complex vibration systems for packaging in microelectronics. Ultrasonics, 2004; 42(1-9): 125—129 doi: 10.1016/j.ultras.2004.02.011
    [25] Lin S, Xu J, Cao H. Analysis on the ring-type piezoelectric ceramic transformer in radial vibration. IEEE Trans. Power Electron., 2016; 31(7): 5079—5088 doi: 10.1109/TPEL.2015.2482990
    [26] 林书玉. 超声换能器的原理与设计. 北京: 科学出版社, 2004: 91—199
    [27] 林仲茂. 超声变幅杆的原理和设计. 北京: 科学出版社, 1987: 199—207
    [28] 许龙, 常燕, 郭林伟, 等. 锥变截面管形超声振动系统的设计. 声学学报, 2016; 41(1): 105—114 doi: 10.15949/j.cnki.0371-0025.2016.01.013
    [29] Forrester J, Davidson J, Foster M, et al. Equivalent circuit parameter extraction methods for piezoelectric transformers. 21st European Conference on Power Electronics and Applications, IEEE, Genova, Italy, 2019; 1—10
  • 加载中
图(10)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  13
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-11-24
  • 刊出日期:  2023-11-02

目录

    /

    返回文章
    返回