Excitation efficiency and mode selection of ultrasonic Lamb wave mixing
-
摘要:
研究了超声Lamb波混频的激励效率与模式选择。在非零能量流和相匹配条件的基础上, 结合Lamb波在结构中的状态分布, 提出了以激励效率参量作为超声Lamb波混频模式选择的依据。根据混频条件筛选混频模式对, 计算相应的激励效率参量, 并通过超声Lamb波混频的仿真模拟与实验测量进行验证。通过对比仿真与实验中得到的非线性参量与激励效率参量的关系, 证明了激励效率参量作为模式选择依据的有效性。研究表明, 激励效率参量可以有效地表征超声Lamb波混频的激发效率, 从而筛选非线性效应明显的模式对, 更好地实现损伤的检测与表征。
Abstract:The excitation efficiency and mode selection of ultrasonic Lamb wave mixing were studied. Based on the non-zero energy flow and matching conditions, combined with the distribution of Lamb wave in the structure, the excitation efficiency parameter was proposed as the basis for ultrasonic Lamb wave mixing mode selection. Based on the wave mixing conditions, the mode pairs were selected and excitation efficiency parameters were calculated. The effectiveness of the excitation efficiency parameter was verified through simulation and experimental measurements of ultrasonic Lamb wave mixing. Comparing the relationship between nonlinear parameters and excitation efficiency parameters obtained from simulation and experiments, the effectiveness of excitation efficiency parameters as a basis for mode selection has been demonstrated. Therefore, the excitation efficiency parameter can effectively characterize the excitation efficiency of ultrasonic Lamb wave mixing, thereby achieving the screening of mode pairs with obvious nonlinear effects for better detection and characterization of damage.
-
Key words:
- Nonlinear ultrasonic /
- Lamb wave mixing /
- Excitation efficiency /
- Mode selection
-
表 1 混频模式对筛选结果
模式对 $ {\boldsymbol{f}}_{\boldsymbol{a}} $ (MHz) $ {\boldsymbol{k}}_{\boldsymbol{a}} $ $ {\boldsymbol{f}}_{\boldsymbol{b}} $ (MHz) $ {\boldsymbol{k}}_{\boldsymbol{b}} $ $ {\boldsymbol{f}}_{\boldsymbol{n}} $ (MHz) $ {\boldsymbol{k}}_{\boldsymbol{n}} $ $ {\boldsymbol{k}}_{\boldsymbol{n}} $ Mode 1 0.713 0.139 0.933 0.189 1.646 0.052 与$ {k}_{b} $同向 S0S0S2 2 0.784 0.153 1.358 0.382 2.142 0.232 与$ {k}_{b} $同向 S0S0S2 3 2.044 0.679 0.971 0.198 3.015 0.485 与$ {k}_{a} $同向 S0S0S2 4 1.079 0.237 1.947 0.328 3.026 0.085 与$ {k}_{b} $同向 S0S1S3 5 2.002 0.698 2.319 0.803 4.321 0.112 与$ {k}_{b} $同向 A0A0S4 表 2 混频模式对激励效率参量
模式对 基频波1 基频波2 混频波 激励效率参量 标准化激励效率参量 1 0.713 MHz S0 0.933 MHz S0 1.646 MHz S2 1.277 × 10-15 1.000 2 0.784 MHz S0 1.358 MHz S0 2.142 MHz S2 1.558 × 10-15 1.220 3 2.044 MHz S0 0.971 MHz S0 3.015 MHz S2 0.614 × 10-15 0.481 4 1.079 MHz S0 1.947 MHz S1 3.026 MHz S3 3.1047 × 10-15 2.431 5 2.002 MHz A0 2.319 MHz A0 4.321 MHz S4 3.0521 × 10-15 2.390 表 3 316L参数表
材料 杨氏模量 (MPa) 泊松比 密度 (t/mm3) 三阶弹性常数 (MPa) A B C 316L 2.02 × 105 0.28 7.89 × 10−9 −1.035 × 10−6 −8.25 × 10−5 −3.96 × 10−5 表 4 三组模式对的标准化参量值
模式对 基频波1 基频波2 标准化激励效率参量 标准化非线性参量仿真值 标准化非线性参量测量值 1 0.713 MHz S0 0.933 MHz S0 1.000 1.000 1.000 2 0.784 MHz S0 1.358 MHz S0 1.220 1.363 1.370 3 2.044 MHz S0 0.971 MHz S0 0.481 0.553 0.558 表 5 三组模式对的标准化参量值
模式对 基频波1 基频波2 混频波 标准化激励效率参量 非线性参量测量值 1 0.713 MHz S0 0.933 MHz S0 1.646 MHz S2 1.000 1.433 2 0.784 MHz S0 1.358 MHz S0 2.142 MHz S2 1.220 1.963 3 2.044 MHz S0 0.971 MHz S0 3.015 MHz S2 0.481 0.800 4 1.079 MHz S0 1.947 MHz S1 3.026 MHz S3 2.431 3.122 5 2.002 MHz A0 2.319 MHz A0 4.321 MHz S4 2.390 2.754 -
[1] Deng G, Tu S, Zhang X, et al. Grain size effect onthe small fatigue crack initiation and growth mechanismsof nickel-based superalloy GH4169. Eng. Fract. Mech., 2015; 134: 433—450 doi: 10.1016/j.engfracmech.2015.01.002 [2] Lima W, Hamilton M F. Finite-amplitude waves in isotropic elastic plates. J. Sound Vib., 2003; 265(4): 819—839 doi: 10.1016/S0022-460X(02)01260-9 [3] Liu Y, Chillara V K, Lissenden C J. On selection of primary modes for generation of strong internally resonant second harmonics in plate. J. Sound Vib., 2013; 332(19): 4517—4528 doi: 10.1016/j.jsv.2013.03.021 [4] 赵珊珊, 邓明晰, 项延训, 等. 超声Lamb波二次谐波发生效率分析与模式选择. 声学学报, 2017; 42(3): 290—296 doi: 10.15949/j.cnki.0371-0025.2017.03.005 [5] 焦敬品, 孟祥吉, 吕洪涛, 等. 基于赫兹接触的板中微裂纹非线性兰姆波检测方法研究. 机械工程学报, 2017; 53(12): 60—69 doi: 10.3901/JME.2017.12.060 [6] Yin Z, Tie Y, Duan Y, et al. Optimization of nonlinear Lamb wave detection system parameters in CFRP laminates. Materials, 2021; 14(12): 3186 doi: 10.3390/ma14123186 [7] Cho H, Hasanian M, Shan S, et al. Nonlinear guided wave technique for localized damage detection in plates with surface-bonded sensors to receive Lamb waves generated by shear-horizontal wave mixing. NDT& E Int., 2019; 102: 35—46 doi: 10.1016/j.ndteint.2018.10.011 [8] 刘素贞, 权泽, 张闯, 等. 疲劳裂纹的电磁超声混频非线性检测. 中国电机工程学报, 2020; 40(5): 1694—1703 doi: 10.13334/j.0258-8013.pcsee.190459 [9] Jiao J, Meng X, He C, et al. Nonlinear Lamb wave-mixing technique for micro-crack detection in plates. NDT& E Int., 2017; 85: 63—71 doi: 10.1016/j.ndteint.2016.10.006 [10] 孙茂循, 项延训, 肖飚, 等. 超声导波混频表征和定位早期局部损伤的研究进展. 声学技术, 2022; 41(3): 313—322 doi: 10.16300/j.cnki.1000-3630.2022.03.003 [11] 银信, 朱武军, 孙茂循, 等. 裂纹尖端塑性区非线性超声混频定位表征. 声学学报, 2021; 46(3): 463—470 doi: 10.15949/j.cnki.0371-0025.2021.03.018 [12] Chillara V K, Lissenden C J. Interaction of guided wave modes in isotropic weakly nonlinear elastic plates: Higher harmonic generation. J. Appl. Phys., 2012; 111(12): 124909 doi: 10.1063/1.4729554 [13] Hasanian M, Lissenden C J. Second order harmonic guided wave mutual interactions in plate: Vector analysis, numerical simulation, and experimental results. J. Appl. Phys., 2017; 122(8): 084901 doi: 10.1063/1.4993924 [14] Hasanian M, Lissenden C J. Second order ultrasonic guided wave mutual interactions in plate: Arbitrary angles, internal resonance, and finite interaction region. J. Appl. Phys., 2018; 124(16): 164904 doi: 10.1063/1.5048227 [15] Ishii Y, Biwa S, Adachi T. Non-collinear interaction of guided elastic waves in an isotropic plate. J. Sound Vib., 2018; 419: 390—404 doi: 10.1016/j.jsv.2018.01.031 [16] Sun M, Xiang Y, Deng M, et al. Experimental and numerical investigations of nonlinear interaction of counter-propagating Lamb waves. Appl. Phys. Lett., 2019; 114(1): 011902 doi: 10.1063/1.5061740 [17] 丁湘燕. 低频非线性Lamb波传播机理及板材损伤评价研究. 博士学位论文, 重庆: 重庆大学, 2020 [18] Metya A K, Tarafder S, Balasubramaniam K. Nonlinear Lamb wave mixing for assessing localized deformation during creep. NDT& E Int., 2018; 98: 89—94 doi: 10.1016/j.ndteint.2018.04.013 [19] Shan S, Hasanian M, Cho H, et al. New nonlinear ultrasonic method for material characterization: Codirectional shear horizontal guided wave mixing in plate. Ultrasonics, 2019; 96: 64—74 doi: 10.1016/j.ultras.2019.04.001 [20] 焦敬品, 李立, 高翔, 等. 金属板疲劳损伤非线性兰姆波混频检测. 声学学报, 2022; 47(2): 256—265 doi: 10.15949/j.cnki.0371-0025.2022.02.010 [21] 刘素贞, 杨圣哲, 袁路航, 等. 含微裂纹铝材的电磁超声Lamb波混频非线性检测及量化分析. 电工技术学报, 2021; 36(17): 3639—3648 doi: 10.19595/j.cnki.1000-6753.tces.201235 [22] Aslam M, Nagarajan P, Remanan M. Defect localization using nonlinear Lamb wave mixing technique. J. Nondestr. Eval., 2021; 40: 16 doi: 10.1007/s10921-020-00747-5 [23] Wang J, Xu C, Zhao Y, et al. Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate. Chin. Phys. B, 2022; 31(1): 432—441 doi: 10.1088/1674-1056/ac0da8 [24] 王乐乐, 郑国彦, 黎海银, 等. 基于非线性混频Lamb波的复合材料拉伸损伤研究. 复合材料科学与工程, 2023; 352(5): 65—70 doi: 10.19936/j.cnki.2096-8000.20230528.010 [25] Deng M. Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J Appl. Phys., 2003; 94(6): 4152—4159 doi: 10.1063/1.1601312 [26] Graff K F. Wave motion in elastic solids. London: Oxford University Press, 1975 -