Interference characteristics and observability of acoustic field radiated by a high-speed vertical moving source
-
摘要:
以高速垂向运动声源宽带连续谱噪声为研究对象, 基于射线理论分析了声场干涉现象的产生机理, 推导了干涉条纹的轨迹方程, 讨论了影响干涉结构特性的因素, 揭示了声场干涉结构的特性和规律。理论和仿真结果表明: 干涉周期与多途信号时延差成反比关系; 减小接收深度或增大接收距离可以提高干涉条纹的可观测性; 较大的海面起伏易使干涉条纹形成断点, 可观测性降低。湖试数据分析结果表明, 干涉条纹主要由直达声−海面反射声干涉条纹构成, 干涉条纹宽度和干涉周期随水平距离的增大而增大。该结果可为高速垂向运动声源运动状态分析、环境参数反演等提供参考。
Abstract:The mechanism of interference structures caused by broadband continuous-spectrum noise radiated by a high-speed vertical moving source is analyzed based on ray theory. The path equations of interference fringes are derived and the factors affecting the interference characteristics are discussed. Finally, the characteristics and laws of interference structures are revealed. Theoretical and simulation results indicate that the interference periods are inversely proportional to the delay differences of multipath signals. The observability of interference fringes can be improved by decreasing the receiving depth or increasing the receiving range. Additionally, randomly undulatory sea surface can cause breakpoints of the interference fringes and reduce the observability. Real data results have confirmed that the interference structures are primarily composed of directed-bottom-reflected wave. Moreover, the interference period increases as the horizontal range increases. The research has potential application prospects for target motion analysis and environment parameter inversion.
-
-
[1] Wood A B. Model experiments on sound propagation in shallow seas. J. Acoust. Soc. Am., 1959; 31(9): 1213—1235 doi: 10.1121/1.1907850 [2] Gershman S G. Interference of wide-band noise signals. Soviet Phys. Acoust., 1965; 1: 34—41 [3] Orlov E F, Fokin V N, Sharonov G A. Parameters of interference modulation of wideband sound in the deep ocean. Soviet Phys. Acoust., 1988; 34: 520—523 [4] Chuprov S D, Mal’tsev N E. An invariant of the spatial-frequency interference pattern of the acoustic field in a layered ocean. Doklady Akademii Nauk SSSR, 1981; 257: 474—479 [5] Lazarev V A, Petukhov Y V. Interference structure of wideband sound in a range-nonuniform wave-guide. Soviet Phys. Acoust., 1988; 34(3): 323—324 [6] Harrison C H. A relation between multipath group velocity, mode number, and ray cycle distance. J. Acoust. Soc. Am., 2012; 132(1): 48—55 doi: 10.1121/1.4726075 [7] Cockrell K L, Schmidt H. A modal Wentzel-Kramers-Brillouin approach to calculating the waveguide invariant for non-ideal waveguides. J. Acoust. Soc. Am., 2011; 130(1): 72—83 doi: 10.1121/1.3592236 [8] Shang E C, Wu J R, Zhao Z D. Relating waveguide invariant and bottom reflection phase-shift parameter P in a Pekeris waveguide. J. Acoust. Soc. Am., 2012; 131(5): 3691—3697 doi: 10.1121/1.3699242 [9] 刘坤, 周士弘. 声速起伏环境下声场时间相关性数值分析. 声学与电子工程, 2010(2): 5—7 [10] Sun S, Liu T, Wang Y, et al. High rate underwater acoustic localization based on the decision tree. IEEE Trans. Geosci. Remote Sens., 2022; 60: 1—13 doi: 10.1109/TGRS.2021.3127919 [11] Quijano J E, Zurk L M, Rouseff D. Demonstration of the invariance principle for active sonar. J. Acoust. Soc. Am., 2008; 123(3): 1329—1337 doi: 10.1121/1.2836763 [12] 李风华, 张燕君, 张仁和, 等. 浅海混响时间−频率干涉特性研究. 中国科学: 物理学 力学 天文学, 2010; 40(7): 838—841 doi: 10.1360/2010-40-7-838 [13] Heaney K D. Rapid geoacoustic characterization: Applied to range-dependent environments. IEEE J. Oceanic Eng., 2004; 29(1): 43—50 doi: 10.1109/JOE.2003.823284 [14] Sostrand K A. Range localization of 10-100 km explosions by means of an endfire array and a waveguide invariant. IEEE J. Oceanic Eng., 2005; 30(1): 207—212 doi: 10.1109/JOE.2004.834598 [15] Turgut A, Orr M, Rouseff D. Broadband source localization using horizontal-beam acoustic intensity striations. J. Acoust. Soc. Am., 2010; 127(1): 73—83 doi: 10.1121/1.3257211 [16] 安良, 徐若珺, 曹红丽. 基于辐射噪声干涉条纹斜率分布的声源深度分辨方法研究. 电子与信息学报, 2022; 44(6): 1906—1918 doi: 10.11999/JEIT211371 [17] 余赟, 惠俊英, 赵智勇, 等. 基于声场干涉结构的双水平阵(元)被动测距. 声学学报, 2012; 37(4): 440—447 doi: 10.15949/j.cnki.0371-0025.2012.04.002 [18] 任群言, 朴胜春, 郭圣明, 等. 利用宽带声场干涉结构特性对移动船只距离的连续估计. 声学学报, 2018; 43(2): 163—168 doi: 10.15949/j.cnki.0371-0025.2018.02.005 [19] 徐国军, 笪良龙, 赵建昕, 等. 声场干涉结构相似度匹配的声源运动参数估计. 声学学报, 2020; 45(4): 527—534 doi: 10.15949/j.cnki.0371-0025.2020.04.009 [20] 江磊, 惠俊英, 蔡平, 等. 干涉谱法测量水下竖直运动声源轨迹. 海洋工程, 2006; 24(4): 38—42 doi: 10.3969/j.issn.1005-9865.2006.04.007 [21] Zhang X, Song K, Li C, et al. Parameter estimation for multi-scale multi-lag underwater acoustic channels based on modified particle swarm optimization algorithm. IEEE Access, 2017; 5: 4808—4820 doi: 10.1109/ACCESS.2017.2681101 [22] Wan B, Peng X, Li X. Real-time ocean wave simulation based on ITTC spectrum using OpenGL. 10th International Conference on Computer Science & Education, IEEE, 2015: 745—748 -