Surface and submerged target discrimination using frequency wavenumber spectral energy expansion differences
-
摘要:
提出基于波数能量频域扩展特征的水面水下目标分辨方法, 通过模态域波束形成计算频率波数谱, 并根据环境信息建立目标深度与波数扩展差异间的映射关系, 并以此作为判决模型实现目标深度辨识。仿真结果表明所提方法在目标方位预估不准时依然稳健。通过SWellEx-96数据和大连海域实测数据验证了本文所提方法的有效性, 海上试验数据处理结果表明该方法在132 m水平阵纵向有效孔径、100~800 Hz处理频段条件下, 初步具备了水面水下目标分辨能力, 且水面目标波数扩展特征高出水下目标10°左右, 两类目标差异明显。从声传播特性的角度, 所提方法为解决目标深度辨识难题提供了新的思路。
Abstract:A discrimination method between submerged and surface targets is proposed based on wavenumber energy frequency domain extension features. The frequency wavenumber spectrum is calculated through modal domain beamforming, and a mapping relationship between target depth and wavenumber extension differences is established based on environmental information, which is used as a decision model to achieve target depth identification. The simulation results show that the proposed method is still robust when the target azimuth estimation is not accurate. The effectiveness of the method was verified through SWellEx-96 data and measured data in the Dalian sea area. The processing results of sea trial data showed that the method has preliminary ability to distinguish surface and submerged targets under the conditions of a 132 m horizontal array longitudinal effective aperture and 100−800 Hz processing frequency band. The wavenumber expansion feature of the surface target is about 10° higher than that of the submerged target, and the difference between the two types of targets is significant. From the perspective of sound propagation characteristics, the proposed approach provides new solution to the problem of target depth discrimination.
-
表 1 不同传播距离和信噪比下的误判率统计表
传播距离 (km) 1 2 3 4 5 6 7 信噪比
(dB)−3 22% 16% 13% 5% 8% 5% 8% 0 13% 21% 9% 5% 4% 4% 4% 3 17% 15% 11% 3% 5% 4% 5% -
[1] Bucker H P. Use of calculated sound fields and matched-field detection to locate sound sources in shallow water. J. Acoust. Soc. Am., 1976; 59(2): 368—373 doi: 10.1121/1.380872 [2] Conan E, Bonnel J, Chonavel T. Source depth discrimination with a vertical line array. J. Acoust. Soc. Am., 2016; 140(5): EL434—EL440 doi: 10.1121/1.4967506 [3] Nosal E M, Neil Frazer L. Track of a sperm whale from delays between direct and surface-reflected clicks. Appl. Acoust., 2006; 67(11): 1187—1201 doi: 10.1016/j.apacoust.2006.05.005 [4] 杨坤德, 马远良. 基于扇区特征向量约束的稳健自适应匹配场处理器. 声学学报, 2006; 31(5): 399—409 doi: 10.15949/j.cnki.0371-0025.2006.05.003 [5] 惠俊英, 孙国仓, 赵安邦. Pekeris波导中简正波声强流及其互谱信号处理. 声学学报, 2008; 33(4): 300—304 doi: 10.15949/j.cnki.0371-0025.2008.04.001 [6] Okopal G, Loughlin P J, Cohen L. Dispersion-invariant features for classification. J. Acoust. Soc. Am., 2008; 123(2): 832—841 doi: 10.1121/1.2821409 [7] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究. 物理学报, 2013; 62(9): 301—310 doi: 10.7498/aps.62.094303 [8] Premus V E, Helfrick M N. Use of mode subspace projections for depth discrimination with a horizontal line array: Theory and experimental results. J. Acoust. Soc. Am., 2013; 133(6): 4019—4031 doi: 10.1121/1.4804317 [9] 李鹏, 章新华, 付留芳, 等. 一种基于模态域波束形成的水平阵被动目标深度估计. 物理学报, 2017; 66(8): 166—178 doi: 10.7498/aps.66.084301 [10] Dreméau A, Le Courtois F, Bonnel J. Reconstruction of dispersion curves in the frequency-wavenumber domain using compressed sensing on a random array. IEEE J. Oceanic Eng., 2017; 42(4): 914—922 doi: 10.1109/JOE.2016.2644780 [11] Liu B, Ramachandran B, Khong A W H. A wavenumber-fitting extrapolation method for FFT-based near-field acoustic holography using microphone array. IEEE International Conference on Acoustics, Prague, Czech Republic, 2011: 145—148 [12] Reeder B, D. Clutter depth discrimination using the wavenumber spectrum. J. Acoust. Soc. Am., 2014; 135(1): EL1—EL7 doi: 10.1121/1.4828979 [13] Nicolas B, Mars J, Lacoume J L. Source depth estimation using modal decomposition and frequency-wavenumber transform. 12th European Signal Processing Conference, IEEE, Vienna, Austria, 2007: 2147—2150 [14] Le Courtois F, Bonnel J. Autoregressive model for high-resolution wavenumber estimation in a shallow water environment using a broadband source. J. Acoust. Soc. Am., 2014; 135(4): 199—205 doi: 10.1121/1.4869821 [15] Le Courtois F, Bonnel J. Wavenumber tracking in a low resolution frequency-wavenumber representation using particle filtering. IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 6855—6859 [16] Le Courtois F, Bonnel J. Compressed sensing for wideband wavenumber tracking in dispersive shallow water. J. Acoust. Soc. Am., 2015; 138(2): 575—583 doi: 10.1121/1.4926381 [17] Yang T C. Source Depth estimation based on synthetic aperture beamforming for a moving source. J. Acoust. Soc. Am., 2015; 138(3): 1678—1686 doi: 10.1121/1.4929748 [18] 张学波, 唐劲松, 钟何平, 等. 适用于宽波束的多接收阵SAS波数域成像算法. 哈尔滨工程大学学报, 2014; 35(1): 93—101 doi: 10.3969/j.issn.1006-7043.2014.01.014 [19] Li P, Zhang X, Li L, et al. Source depth discrimination using wavenumber domain feature with a horizontal array. Appl. Acoust., 2020; 164: 107287 doi: 10.1016/j.apacoust.2020.107287 [20] 李鹏. 近浅海中被动声呐目标探测关键技术研究. 博士学位论文, 哈尔滨: 哈尔滨工程大学, 2019: 99—126 -