EI / SCOPUS / CSCD 收录

中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sinusoid-Golay编码单脉冲激励提升磁声电成像精度

李培霞 卢振 陈伟 孙晓冬 郭余庆 郭各朴 马青玉

李培霞, 卢振, 陈伟, 孙晓冬, 郭余庆, 郭各朴, 马青玉. Sinusoid-Golay编码单脉冲激励提升磁声电成像精度[J]. 声学学报, 2023, 48(6): 1208-1217. doi: 10.12395/0371-0025.2022088
引用本文: 李培霞, 卢振, 陈伟, 孙晓冬, 郭余庆, 郭各朴, 马青玉. Sinusoid-Golay编码单脉冲激励提升磁声电成像精度[J]. 声学学报, 2023, 48(6): 1208-1217. doi: 10.12395/0371-0025.2022088
LI Peixia, LU Zhen, CHEN Wei, SUN Xiaodong, GUO Yuqing, GUO Gepu, MA Qingyu. Precision improvement of magneto-acousto-electrical imaging based on the excitation of single Sinusoid-Golay coded pulse[J]. ACTA ACUSTICA, 2023, 48(6): 1208-1217. doi: 10.12395/0371-0025.2022088
Citation: LI Peixia, LU Zhen, CHEN Wei, SUN Xiaodong, GUO Yuqing, GUO Gepu, MA Qingyu. Precision improvement of magneto-acousto-electrical imaging based on the excitation of single Sinusoid-Golay coded pulse[J]. ACTA ACUSTICA, 2023, 48(6): 1208-1217. doi: 10.12395/0371-0025.2022088

Sinusoid-Golay编码单脉冲激励提升磁声电成像精度

doi: 10.12395/0371-0025.2022088
基金项目: 国家自然科学基金项目(11934009, 11974187, 12227808, 12174198)、江苏省自然科学基金项目(BE2022814)和江苏省研究生实践创新项目(KYCX21_1388)资助
详细信息
    通讯作者:

    郭各朴, guogepu@njnu.edu.cn

    马青玉, maqingyu@njnu.edu.cn

  • PACS: 43.35, 72.55

Precision improvement of magneto-acousto-electrical imaging based on the excitation of single Sinusoid-Golay coded pulse

Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934009, 11974187, 12227808 and 12174198), Natural Science Foundation of Jiangsu Province (Grant No. BE2022814), and the Practice and Innovation Project of Postgraduates in Jiangsu Province under Grant KYCX21_1388.
More Information
  • 摘要:

    针对低电导率生物组织的成像需求, 利用Sinusoid-Golay编码单脉冲激励提高磁声电信号的信噪比和定位精度, 实现了高精度的磁声电成像。首先, 在考虑换能器指向性的基础上, 推导了Sinusoid-Golay编码单脉冲激励的磁声电理论公式, 并引入激励转换因子和自相关计算, 实现磁声电信号测量和解码重建, 理论证明了N位Sinusoid-Golay编码可以将磁声电信号的主瓣幅度提高2N倍, 并具有良好的脉冲压缩和噪声抑制能力。然后, 在5 dB信噪比条件下, 模拟了16 位Sinusoid-Golay编码单脉冲激励层状组织模型所产生的磁声电信号, 通过匹配滤波解码和叠加增强了磁声电信号的主瓣, 并消除了其旁瓣, 实现了组织边界的精确定位和电导率梯度的准确重建。最后, 搭建了磁声电检测和线性扫描成像系统, 利用正弦单周期和16位Sinusoid-Golay编码单脉冲激励, 对三层凝胶仿体进行了磁声电测量和图像重建。Sinusoid-Golay编码单脉冲激励能够提高磁声电信号的信噪比约6.5 dB, 并精确重构了组织边界电导率变化的幅值和极性。该研究为基于电学特性差异的组织病变早期检测提供了一种高精度磁声电快速成像方法。

     

  • 图 1  基于Sinusoid-Golay编码脉冲激励的磁声电检测系统原理图

    图 2  (a) 层状凝胶模型的二维电导率分布; (b) 实验所用平面活塞换能器的冲激响应

    图 3  (a) 16位Golay码序列${G_A}\left( t \right)$和Sinusoid-Golay编码脉冲${T_A}\left( t \right)$; (b) 重建的16位Golay码序列${G_B}\left( t \right)$和Sinusoid-Golay编码脉冲${T_B}\left( t \right)$

    图 4  (a) Sinusoid-Golay编码脉冲${T_A}\left( t \right)$${T_B}\left( t \right)$分别经过匹配滤波后的波形; (b) 叠加后的波形包络

    图 5  SNR = 5 dB条件下的模拟结果, 其中(a)和(b)分别为编码脉冲${T_A}\left( t \right)$激励所产生的磁声电信号${V_{AN}}\left( t \right)$和经匹配滤波后的磁声电信号, (c)和(d)分别为重建的编码脉冲${T_B}\left( t \right)$激励所产生的磁声电信号${V_{BN}}\left( t \right)$和经匹配滤波后的磁声电信号, (e)为重建信号叠加后的磁声电信号V(t)

    图 6  基于Sinusoid-Golay编码单脉冲激励的磁声电测量实验系统

    图 7  (a) 16位Sinusoid-Golay编码脉冲${T_A}\left( t \right)$激励所产生的声信号; (b) 实验磁声电信号${V_{AN}}\left( t \right)$; (c) 重建的磁声电信号${V_{BN}}\left( t \right)$; (d) 经匹配滤波解码和叠加的磁声电信号V(t); (e) 单周期正弦脉冲激励测量到的磁声电波形

    图 8  磁声电重建图像 (a) 基于Sinusoid-Golay编码单脉冲; (b) 基于单周期正弦脉冲激励

    图 9  基于Sinusoid-Golay编码单脉冲激励的磁声电信号信噪比增益与码元长度的关系

  • [1] Gabriel C, Gabriel S, Corthout Y E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol., 1996; 41(11): 2231—2249 doi: 10.1088/0031-9155/41/11/001
    [2] 尹鸿润, 叶明, 吴阳, 等. 基于生物阻抗谱成像的生物组织检测方法. 物理学报, 2022; 71(4): 048706 doi: 10.7498/aps.71.20211600
    [3] Metherall P, Barber D C, Smallwood R H, et al. Three-dimensional electrical impedance tomography. Nature, 1996; 380(6574): 509—512 doi: 10.1038/380509a0
    [4] 杨宇祥, 白世展, 林海军, 等. 基于multisine激励与整周期采样的多频电阻抗成像系统设计. 物理学报, 2022; 71(5): 058703 doi: 10.7498/aps.71.20211375
    [5] Cheney M, Isaacson D, Newell J C. Electrical impedance tomography. SIAM Rev., 1999; 41(1): 85—101 doi: 10.1137/S0036144598333613
    [6] Wen H, Shah J, Balaban R S. Hall effect imaging. IEEE Trans. Biomed. Eng., 1998; 45(1): 119—124 doi: 10.1109/10.650364
    [7] Zhou Y, Ma Q Y, Guo G P, et al. Magneto-acousto-electrical measurement based electrical conductivity reconstruction for tissues. IEEE Trans. Biomed. Eng., 2017; 65(5): 1086—1094 doi: 10.1109/TBME.2017.2740924
    [8] Yu Z F, Zhou Y, Li Y Z, et al. Performance improvement of magneto-acousto-electrical tomography for biological tissues with sinusoid-Barker coded excitation. Chin. Phys. B, 2018; 27(9): 094302 doi: 10.1088/1674-1056/27/9/094302
    [9] Zhou Y, Yu Z F, Ma Q Y, et al. Noninvasive treatment-efficacy evaluation for HIFU therapy based on magneto-acousto-electrical tomography. IEEE Trans. Biomed. Eng., 2018; 66(3): 666—674 doi: 10.1109/TBME.2018.2853594
    [10] Li Y Y, Liu G Q, Xia H, et al. Numerical simulations and experimental study of magneto-acousto-electrical tomography with plane transducer. IEEE Trans. Magnet., 2017; 54(3): 5100704 doi: 10.1109/TMAG.2017.2771564
    [11] Guo L, Liu G Q, Xia H. Magneto-acousto-electrical tomography with magnetic induction for conductivity reconstruction. IEEE Trans. Biomed. Eng., 2014; 62(9): 2114—2124 doi: 10.1109/TBME.2014.2382562
    [12] Kaboutari K, Tetik A Ö, Ghalichi E, et al. Data acquisition system for MAET with magnetic field measurements. Phys. Med. Biol., 2019; 64: 115016 doi: 10.1088/1361-6560/ab1809
    [13] Haider S, Hrbek A, Xu Y. Magneto-acousto-electrical tomography: a potential method for imaging current density and electrical impedance. Physiol. Meas., 2008; 29(6): S41—S50 doi: 10.1088/0967-3334/29/6/S04
    [14] Grasland-Mongrain P, Mari J M, Chapelon J Y, et al. Lorentz force electrical impedance tomography. IRBM, 2013; 34(4-5): 357—360 doi: 10.1016/j.irbm.2013.08.002
    [15] Sun Z S, Liu G Q, Xia H, et al. Lorentz force electrical-impedance tomography using linearly frequency-modulated ultrasound pulse. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2017; 65(2): 168—177 doi: 10.1109/TUFFC.2017.2781189
    [16] 张慧琳, 宋小军, 他得安. Barker 码激励超声导波在长骨检测中的应用. 声学学报, 2014; 39(2): 257—263 doi: 10.15949/j.cnki.0371-0025.2014.02.013
    [17] 宋小军, 他得安, 王威琪. 利用 Golay 码测量长骨中传播的超声导波. 仪器仪表学报, 2012; 33(3): 530—536 doi: 10.19650/j.cnki.cjsi.2012.03.007
    [18] Guo L, Liu G, Xia H, et al. Conductivity reconstruction algorithms and numerical simulations for magneto-acousto-electrical tomography with piston transducer in scan mode. Chin Phys B., 2014; 23(10): 104303 doi: 10.1088/1674-1056/23/10/104303
    [19] Li P, Chen W, Guo G, et al. General principle and optimization of magneto-acousto-electrical tomography. Med. Phys., 2023; 50(5): 3076—3091 doi: 10.1002/mp.16317
    [20] Jin Y, Zhao H L, Liu G, et al. The application of wavelet filtering method in magneto-acousto-electrical tomography. Phys. Med. Biol., 2023; 68: 145014 doi: 10.1088/1361-6560/ace09c
    [21] Trots I, Nowicki A, Secomski W, et al. Golay sequences-side-lobe-canceling codes for ultrasonography. Arch. Acoust., 2004; 29(1): 87—97
    [22] Wang Y, Mai W, Yin T, et al. Magneto-acoustic-electrical tomography combining maximum length sequence–coded excitation and liquid metal image contrast agent. Ultrasound Med. Biol., 2022; 48(9): 1941—1956 doi: 10.1016/j.ultrasmedbio.2022.05.032
    [23] Choi T, Chang S, Kim T H, et al. Golay-coded excitations for rotational intravascular ultrasound imaging. IEEE Access, 2019; 7: 119718—119728 doi: 10.1109/ACCESS.2019.2936462
    [24] 刘桂雄, 唐文明, 纪轩荣. 准单次正交互补 Golay 码超声编解码方法研究. 仪器仪表学报, 2016; 37(6): 1309—1315 doi: 10.19650/j.cnki.cjsi.2016.06.014
    [25] O'Donnell M. Coded excitation system for improving the penetration of real-time phased-array imaging systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1992; 39(3): 341—351 doi: 10.1109/58.143168
    [26] Deng D, Sun T, Yu L, et al. Image quality improvement of magneto-acousto-electrical tomography with Barker coded excitation. Biomed. Signal Process. Control., 2022; 77: 103823 doi: 10.1016/j.bspc.2022.103823
    [27] Wang N, Li X, Xu J, et al. A high frequency endoscopic ultrasound imaging method combining chirp coded excitation and compressed sensing. Ultrasonics, 2022; 121: 106669 doi: 10.1016/j.ultras.2021.106669
    [28] Zhou Y, Wang J, Sun X, et al. Transducer selection and application in magnetoacoustic tomography with magnetic induction. J. Appl. Phys., 2016; 119(9): 094903 doi: 10.1063/1.4942860
    [29] Zhang J, Gang T, Ye C, et al. Low sidelobe level and high time resolution for metallic ultrasonic testing with linear-chirp-Golay coded excitation. Nondestruct. Test. Eval., 2018; 33(2): 213—228 doi: 10.1080/10589759.2017.1371716
    [30] Fujita H, Hasegawa H. Effect of frequency characteristic of excitation pulse on lateral spatial resolution in coded ultrasound imaging. J. Appl. Phys., 2017; 56(7S1): 07JF16 doi: 10.7567/JJAP.56.07JF16
    [31] Sun T, Yu L, Wan Q, et al. Three-dimensional magneto-acousto-electrical tomography (3D-MAET) with coded excitation: A phantom validation study. Neurocomputing, 2022; 563: 80—89 doi: 10.1016/j.neucom.2023.02.055
    [32] 周艳宗, 王冲, 魏天问, 等. 基于Golay脉冲编码技术的相干激光雷达仿真研究. 中国激光, 2018; 45(8): 0810004 doi: 10.3788/CJL201845.0810004
  • 加载中
图(9)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  6
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 修回日期:  2022-11-22
  • 刊出日期:  2023-11-02

目录

    /

    返回文章
    返回