Precision improvement of magneto-acousto-electrical imaging based on the excitation of single Sinusoid-Golay coded pulse
-
摘要:
针对低电导率生物组织的成像需求, 利用Sinusoid-Golay编码单脉冲激励提高磁声电信号的信噪比和定位精度, 实现了高精度的磁声电成像。首先, 在考虑换能器指向性的基础上, 推导了Sinusoid-Golay编码单脉冲激励的磁声电理论公式, 并引入激励转换因子和自相关计算, 实现磁声电信号测量和解码重建, 理论证明了
N 位Sinusoid-Golay编码可以将磁声电信号的主瓣幅度提高2N 倍, 并具有良好的脉冲压缩和噪声抑制能力。然后, 在5 dB信噪比条件下, 模拟了16 位Sinusoid-Golay编码单脉冲激励层状组织模型所产生的磁声电信号, 通过匹配滤波解码和叠加增强了磁声电信号的主瓣, 并消除了其旁瓣, 实现了组织边界的精确定位和电导率梯度的准确重建。最后, 搭建了磁声电检测和线性扫描成像系统, 利用正弦单周期和16位Sinusoid-Golay编码单脉冲激励, 对三层凝胶仿体进行了磁声电测量和图像重建。Sinusoid-Golay编码单脉冲激励能够提高磁声电信号的信噪比约6.5 dB, 并精确重构了组织边界电导率变化的幅值和极性。该研究为基于电学特性差异的组织病变早期检测提供了一种高精度磁声电快速成像方法。-
关键词:
- 磁声电成像 /
- Sinusoid-Golay编码脉冲激励 /
- 激励转换因子 /
- 匹配滤波 /
- 信噪比
Abstract:Based on imaging requirements for biological tissues with low-level electrical conductivities, the single Sinusoid-Golay coded pulse excitation is introduced to enhance the signal-to-noise ratio (SNR) and the positioning accuracy of magneto-acousto-electrical (MAE) signals, resulting in the improved precision of MAE imaging. Firstly, the formula of the detected MAE signal is derived for the single-excitation of a Sinusoid-Golay coded pulse with the consideration of the radiation pattern of actual transducers. The MAE measurement of the dual-excitation is realized by introducing the excitation conversion factor and the autocorrelation calculation. The main lobe amplitude enhancement by 2
N times is demonstrated in theory for theN -bit Sinusoid-Golay coded pulse excitation with the favorable capabilities of pulse compression and noise suppression. Then, numerical studies for MAE signals are conducted for a layered gel model under the SNR of 5 dB. The pulse compression and suppression of side-lobes for decoded MAE signals are accomplished by the matched filter and the wave superposition with improved accuracies of boundary positions and conductivity gradients. Finally, compared with the one-cycle sinusoidal excitation, the SNR improvement of about 6.5 dB is proved by the experimental measurement of MAE signals for a three-layer gel model with the 16-bit Sinusoid-Golay coded pulse excitation. The image of tissue boundaries is reconstructed accurately in terms of amplitude and polarity of conductivity variations. This study provides an optimized fast imaging technology for the detection of early tissue lesions based on the difference of electrical properties. -
-
[1] Gabriel C, Gabriel S, Corthout Y E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol., 1996; 41(11): 2231—2249 doi: 10.1088/0031-9155/41/11/001 [2] 尹鸿润, 叶明, 吴阳, 等. 基于生物阻抗谱成像的生物组织检测方法. 物理学报, 2022; 71(4): 048706 doi: 10.7498/aps.71.20211600 [3] Metherall P, Barber D C, Smallwood R H, et al. Three-dimensional electrical impedance tomography. Nature, 1996; 380(6574): 509—512 doi: 10.1038/380509a0 [4] 杨宇祥, 白世展, 林海军, 等. 基于multisine激励与整周期采样的多频电阻抗成像系统设计. 物理学报, 2022; 71(5): 058703 doi: 10.7498/aps.71.20211375 [5] Cheney M, Isaacson D, Newell J C. Electrical impedance tomography. SIAM Rev., 1999; 41(1): 85—101 doi: 10.1137/S0036144598333613 [6] Wen H, Shah J, Balaban R S. Hall effect imaging. IEEE Trans. Biomed. Eng., 1998; 45(1): 119—124 doi: 10.1109/10.650364 [7] Zhou Y, Ma Q Y, Guo G P, et al. Magneto-acousto-electrical measurement based electrical conductivity reconstruction for tissues. IEEE Trans. Biomed. Eng., 2017; 65(5): 1086—1094 doi: 10.1109/TBME.2017.2740924 [8] Yu Z F, Zhou Y, Li Y Z, et al. Performance improvement of magneto-acousto-electrical tomography for biological tissues with sinusoid-Barker coded excitation. Chin. Phys. B, 2018; 27(9): 094302 doi: 10.1088/1674-1056/27/9/094302 [9] Zhou Y, Yu Z F, Ma Q Y, et al. Noninvasive treatment-efficacy evaluation for HIFU therapy based on magneto-acousto-electrical tomography. IEEE Trans. Biomed. Eng., 2018; 66(3): 666—674 doi: 10.1109/TBME.2018.2853594 [10] Li Y Y, Liu G Q, Xia H, et al. Numerical simulations and experimental study of magneto-acousto-electrical tomography with plane transducer. IEEE Trans. Magnet., 2017; 54(3): 5100704 doi: 10.1109/TMAG.2017.2771564 [11] Guo L, Liu G Q, Xia H. Magneto-acousto-electrical tomography with magnetic induction for conductivity reconstruction. IEEE Trans. Biomed. Eng., 2014; 62(9): 2114—2124 doi: 10.1109/TBME.2014.2382562 [12] Kaboutari K, Tetik A Ö, Ghalichi E, et al. Data acquisition system for MAET with magnetic field measurements. Phys. Med. Biol., 2019; 64: 115016 doi: 10.1088/1361-6560/ab1809 [13] Haider S, Hrbek A, Xu Y. Magneto-acousto-electrical tomography: a potential method for imaging current density and electrical impedance. Physiol. Meas., 2008; 29(6): S41—S50 doi: 10.1088/0967-3334/29/6/S04 [14] Grasland-Mongrain P, Mari J M, Chapelon J Y, et al. Lorentz force electrical impedance tomography. IRBM, 2013; 34(4-5): 357—360 doi: 10.1016/j.irbm.2013.08.002 [15] Sun Z S, Liu G Q, Xia H, et al. Lorentz force electrical-impedance tomography using linearly frequency-modulated ultrasound pulse. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2017; 65(2): 168—177 doi: 10.1109/TUFFC.2017.2781189 [16] 张慧琳, 宋小军, 他得安. Barker 码激励超声导波在长骨检测中的应用. 声学学报, 2014; 39(2): 257—263 doi: 10.15949/j.cnki.0371-0025.2014.02.013 [17] 宋小军, 他得安, 王威琪. 利用 Golay 码测量长骨中传播的超声导波. 仪器仪表学报, 2012; 33(3): 530—536 doi: 10.19650/j.cnki.cjsi.2012.03.007 [18] Guo L, Liu G, Xia H, et al. Conductivity reconstruction algorithms and numerical simulations for magneto-acousto-electrical tomography with piston transducer in scan mode. Chin Phys B., 2014; 23(10): 104303 doi: 10.1088/1674-1056/23/10/104303 [19] Li P, Chen W, Guo G, et al. General principle and optimization of magneto-acousto-electrical tomography. Med. Phys., 2023; 50(5): 3076—3091 doi: 10.1002/mp.16317 [20] Jin Y, Zhao H L, Liu G, et al. The application of wavelet filtering method in magneto-acousto-electrical tomography. Phys. Med. Biol., 2023; 68: 145014 doi: 10.1088/1361-6560/ace09c [21] Trots I, Nowicki A, Secomski W, et al. Golay sequences-side-lobe-canceling codes for ultrasonography. Arch. Acoust., 2004; 29(1): 87—97 [22] Wang Y, Mai W, Yin T, et al. Magneto-acoustic-electrical tomography combining maximum length sequence–coded excitation and liquid metal image contrast agent. Ultrasound Med. Biol., 2022; 48(9): 1941—1956 doi: 10.1016/j.ultrasmedbio.2022.05.032 [23] Choi T, Chang S, Kim T H, et al. Golay-coded excitations for rotational intravascular ultrasound imaging. IEEE Access, 2019; 7: 119718—119728 doi: 10.1109/ACCESS.2019.2936462 [24] 刘桂雄, 唐文明, 纪轩荣. 准单次正交互补 Golay 码超声编解码方法研究. 仪器仪表学报, 2016; 37(6): 1309—1315 doi: 10.19650/j.cnki.cjsi.2016.06.014 [25] O'Donnell M. Coded excitation system for improving the penetration of real-time phased-array imaging systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1992; 39(3): 341—351 doi: 10.1109/58.143168 [26] Deng D, Sun T, Yu L, et al. Image quality improvement of magneto-acousto-electrical tomography with Barker coded excitation. Biomed. Signal Process. Control., 2022; 77: 103823 doi: 10.1016/j.bspc.2022.103823 [27] Wang N, Li X, Xu J, et al. A high frequency endoscopic ultrasound imaging method combining chirp coded excitation and compressed sensing. Ultrasonics, 2022; 121: 106669 doi: 10.1016/j.ultras.2021.106669 [28] Zhou Y, Wang J, Sun X, et al. Transducer selection and application in magnetoacoustic tomography with magnetic induction. J. Appl. Phys., 2016; 119(9): 094903 doi: 10.1063/1.4942860 [29] Zhang J, Gang T, Ye C, et al. Low sidelobe level and high time resolution for metallic ultrasonic testing with linear-chirp-Golay coded excitation. Nondestruct. Test. Eval., 2018; 33(2): 213—228 doi: 10.1080/10589759.2017.1371716 [30] Fujita H, Hasegawa H. Effect of frequency characteristic of excitation pulse on lateral spatial resolution in coded ultrasound imaging. J. Appl. Phys., 2017; 56(7S1): 07JF16 doi: 10.7567/JJAP.56.07JF16 [31] Sun T, Yu L, Wan Q, et al. Three-dimensional magneto-acousto-electrical tomography (3D-MAET) with coded excitation: A phantom validation study. Neurocomputing, 2022; 563: 80—89 doi: 10.1016/j.neucom.2023.02.055 [32] 周艳宗, 王冲, 魏天问, 等. 基于Golay脉冲编码技术的相干激光雷达仿真研究. 中国激光, 2018; 45(8): 0810004 doi: 10.3788/CJL201845.0810004 -