A convolution quadrature method for acoustic time domain boundary element method
-
摘要:
核函数中保留Dirac函数的原型, 形成关于时间的卷积积分, 是声学时域边界元法中一种稳定、有效的时间数值积分计算方法(CQ-BEM)。然而, 传统CQ-BEM中卷积积分系数的获取有计算量大、耗时长, 且对不同单元需要重新计算的问题, 极大地降低了CQ-BEM法计算时域声场的效率。针对传统CQ-BEM积分系数计算效率低的问题, 本文利用多项式展开定理给出了待求函数泰勒系数的解析表达与数值计算方法, 建立了不同单元间待求系数的转换理论, 可以在一次循环迭代内完成不同单元的积分系数的计算, 大幅降低了计算量, 提高了CQ-BEM方法的声场计算效率。脉动球源数值算例结果表明, 在相同要求下, 本文方法计算时间较传统方法减少50%以上, 相对误差小5个数量级以上, 且计算时间随单元数的增长率仅为传统方法的2.34%。因此, 本文提出的系数计算方法能够有效提高CQ-BEM方法的时域声场计算效率, 拓展了CQ-BEM在大型机电设备时域声场模拟的计算规模。
Abstract:The convolution quadrature based boundary element method (CQ-BEM) can preserve the kernel Dirac function when dealing with integral in time domain, forming a time convolution, which is a stable and effective numerical method in the time domain acoustic boundary element method. However, the traditional way to acquire the convolution integral coefficients in CQ-BEM requires large computation, long calculating time, and recalculation for different elements, which greatly reduces the efficiency of calculating the sound field in time domain. In order to solve the problem, this paper proposes the analytical expression and the numerical method of the coefficients based on polynomial theorem. The conversion theory of the coefficients between different elements is established so that the coefficients of different elements can be acquired in a single calculation, which greatly reduces the calculation amount. The sound field calculation efficiency of CQ-BEM method is then improved. In the numerical example of pulsating spherical source, the calculation time, relative error and growth rate of calculation time with the number of elements of traditional method and proposed method are compared. The results show that, under the same requirements, the calculation time of this method is more than 50% less than the traditional method, the relative error is more than 5 orders of magnitude less, and the growth rate of calculation time with the number of elements is only 2.34% of the traditional method, which can effectively improve the computational efficiency of CQ-BEM method in time domain sound field.
-
表 1 截断项数 − 阶数(L−n)二次曲线拟合参数
相对误差 $a$ $b$ $c$ ${10^{ - 2}}$ −3.24408 × 10−3 2.75610 × 10−1 5.60391 × 100 ${10^{ - 4}}$ −3.39617 × 10−3 2.98290 × 10−1 8.42215 × 100 ${10^{ - 6}}$ −3.45414 × 10−3 3.11518 × 10−1 1.08118 × 101 ${10^{ - 8}}$ −3.47816 × 10−3 3.20749 × 10−1 1.29764 × 101 ${10^{ - 10}}$ −3.48680 × 10−3 3.27784 × 10−1 1.49946 × 101 表 2 卷积系数
${\alpha _n}$ 关于重复计算次数x的线性拟合参数${k_1}$ ${b_1}$ 传统方法 1.73953×10−3 6.70258×10−3 本文方法 3.97174×10−5 1.95126×10−1 表 3 计算时间−迭代步数一次曲线拟合参数
${k_2}$ ${b_2}$ 传统方法 5.20367×10−1 2.40009×103 本文方法 5.60708×10−1 4.86759×102 -
[1] Brebbia C A, Dominguez J. Boundary element methods for potential problems. Appl. Math. Modell., 1977; 1(7): 372—378 doi: 10.1016/0307-904X(77)90046-4 [2] Brebbia C A. The boundary element method for engineers. Pentech Press, 1978 [3] Ciskowski R D, Brebbia C A. Boundary element methods in acoustics. Springer Dordrecht, 1991 [4] Mansur W J. A time–stepping technique to solve wave propagation problems using the boundary element method. Doctoral dissertation, University of Southampton, 1983 [5] Banerjee P K, Manolis G D, Ahmad S. Transient elastodynamic analysis of three-dimensional problems by boundary element method. Earthquake Eng. Struct. Dyn., 1986; 14(6): 933—949 doi: 10.1002/eqe.4290140609 [6] Ahmad S, Banerjee P K. Time-domain transient elastodynamic analysis of 3-D solids by BEM. Int. J. Numer. Methods Eng., 1988; 26(8): 1709—1728 doi: 10.1002/nme.1620260804 [7] Seol H, Jung B, Suh J C, et al. Prediction of non-cavitating underwater propeller noise. J. Sound Vib., 2002; 257(1): 131—156 doi: 10.1006/jsvi.2002.5035 [8] Chappell D J, Harris P J, Henwood D, et al. A stable boundary element method for modeling transient acoustic radiation. J. Acoust. Soc. Am., 2006; 120(1): 74—80 doi: 10.1121/1.2202909 [9] 赵汝炫, 董大伟, 闫兵, 等. 车用交流发电机电磁振动噪声预测研究. 噪声与振动控制, 2017; 37(3): 52—57 doi: 10.3969/j.issn.1006-1355.2017.03.010 [10] 吴海军, 蒋伟康. 二维声学多层快速多极子边界元及其应用. 声学学报, 2012; 37(1): 55—61 doi: 10.15949/j.cnki.0371-0025.2012.01.015 [11] Cole D M, Dan D K, Minster J B. A numerical boundary integral equation method for elastodynamics. I. Bull. Seismol. Soc. Am., 1978; 68(5): 1331—1357 doi: 10.1785/BSSA0680051331 [12] Dominguez J, Gallego R. The time doamin boundary element method for elastodynamic problems. Math. Comput. Modell., 1991; 15(3-5): 119—129 doi: 10.1016/0895-7177(91)90058-F [13] Siebrits E, Birgisson B, Peirce A P, et al. On the numerical stability of time domain boundary element methods. Int. J. Blasting Fragm., 1997; 1: 305—316 doi: 10.1080/13855149709408401 [14] Yu G, Mansur W J, Carrer J A M, et al. A linear θ method applied to 2D time-domain BEM. Commun. Numer. Methods Eng., 1998; 14(12): 1171—1179 doi: 10.1002/(sici)1099-0887(199812)14:12%3C1171::aid-cnm217%3E3.0.co;2-g [15] Jr Soares D, Mansur W J. An efficient stabilized boundary element formulation for 2D time-domain acoustics and elastodynamics. Comput. Mech., 2007; 40(2): 355—365 doi: 10.1007/s00466-006-0104-3 [16] Coda H B, Venturini W S. Further improvements on three dimensional transient BEM elastodynamic analysis. Eng. Anal. Boundary Elem., 1996; 17(3): 231—243 doi: 10.1016/S0955-7997(96)00019-7 [17] Panagiotopoulos C G, Manolis G D. Three-dimensional BEM for transient elastodynamics based on the velocity reciprocal theorem. Eng. Anal. Boundary Elem., 2011; 35(3): 507—516 doi: 10.1016/j.enganabound.2010.09.002 [18] Lubich C. Convolution quadrature and discretized operational calculus. I. Numer. Math., 1988; 52(2): 129—145 doi: 10.1007/BF01398686 [19] Lubich C. Convolution quadrature and discretized operational calculus. II. Numer. Math., 1988; 52(4): 413—425 doi: 10.1007/BF01462237 [20] Schanz M, Antes H. Application of 'operational quadrature methods' in time domain boundary element methods. Meccanica, 1997; 32(3): 179—186 doi: 10.1023/A:1004258205435 [21] Abreu A I, Carrer J A M, Mansur W J. Scalar wave propagation in 2D: A BEM formulation based on the operational quadrature method. Eng. Anal. Boundary Elem., 2003; 27(2): 101—105 doi: 10.1016/S0955-7997(02)00087-5 [22] Zhang C. Transient elastodynamic antiplane crack analysis of anisotropic solids. Int. J. Solids Struct., 2000; 37(42): 6107—6130 doi: 10.1016/S0020-7683(99)00260-7 [23] Schanz M, Antes H. A new visco and elastodynamic time domain boundary element formulation. Comput. Mech., 1997; 20(5): 452—459 doi: 10.1007/s004660050265 [24] Schanz M. Application of 3D time domain boundary element formulation to wave propagation in poroelastic solids. Eng. Anal. Boundary Elem., 2001; 25(4/5): 363—376 doi: 10.1016/S0955-7997(01)00022-4 [25] Kielhorn L, Schanz M. An elastodynamic Galerkin boundary element formulation for semi-infinite domains in time domain. PAMM, 2008; 8(1): 10295—10296 doi: 10.1002/pamm.200810295 [26] Saitoh T, Chikazawa F, Hirose S. Convolution quadrature time-domain boundary element method for 2-D fluid-saturated porous media. Appl. Math. Modell., 2014; 38(15-16): 3724—3740 doi: 10.1016/j.apm.2014.02.009 [27] Marburg S, Nolte B. Computational acoustics of noise propagation in fluids − finite and boundary element methods. Springer Berlin Heidelberg, 2008 [28] Martin P A. The pulsating orb: solving the wave equation outside a ball. Proc. R. Soc. A, 2016; 472: 20160037 doi: 10.1098/rspa.2016.0037 [29] Ju H, Zhong F. Near sound field analysis of rotating sources and its application in turbomachinery. 34th Aerospace Sciences Meeting and Exhibit, AIAA, Reno, NV, 1996 -