Statistical characteristics of acoustic transmission loss in shallow water caused by fluctuant surfaces and a fast sound field prediction method
-
摘要:
基于海洋环境信息、起伏海面的小斜率近似和简正波模型, 研究了浅海环境中不同季节起伏海面散射引起的声传播损失的统计特性, 给出了海面散射声传播损失−风速拟合公式以及一种快速声场预报方法, 可据此快速评估水下长期工作设备的工作性能。仿真结果表明, 对于全年运行的水声设备, 当传播距离超过10 km时, 须考虑起伏海面散射对声传播的影响。起伏海面散射对声场的影响冬季大于夏季, 在夏季负跃层环境中起伏海面散射对下发上收声场的影响大于下发下收声场。
Abstract:In this paper, the statistical characteristics of acoustic transmission loss in shallow water caused by fluctuant surface scattering in different seasons are studied based on the marine environmental data, small slope approximation of the fluctuant surface and normal mode method. A formula fitting the relationship between wind speeds and surface scattering transmission loss is proposed, accompanied with a fast method for sound field prediction. These works can contribute to the rapid evaluation of the performance of long-working underwater acoustic equipment. It is shown that for the underwater acoustic equipment, the influence of fluctuant surface scattering on sound propagation cannot be ignored, when the transmission distance exceeds 10 km. In addition, such influence in winter is greater than that in summer. Furthermore, in the negative thermocline environment in summer, the influence of fluctuant surface scattering on the sound filed with source below the thermocline and the receiver above the thermocline is greater than that on the sound filed with source and receiver both below the thermocline.
-
表 1 2020年声场能量受起伏海面影响的概率(传播距离20 km)
频率 (Hz) 接收深度 (m) 季节 起伏海面散射引起的声传播损失大于2 dB 起伏海面散射引起的声传播损失大于5 dB 风速 (m/s) 概率 (%) 风速 (m/s) 概率 (%) 200 7 冬季 ≥ 10 1.6 ≥ 12 0.1 春季 ≥ 10 0.7 ≥ 12 0.3 夏季 ≥ 12 0.7 — 0 秋季 ≥ 12 0.3 — 0 50 冬季 ≥ 10 1.6 — 0 春季 ≥ 10 0.7 — 0 夏季 — 0 — 0 秋季 ≥ 12 0.3 — 0 1000 7 冬季 ≥ 6 29.3 ≥ 8 8.2 春季 ≥ 6 20.7 ≥ 10 0.7 夏季 ≥ 10 1.3 — 0 秋季 ≥ 8 5.6 ≥ 12 0.3 50 冬季 ≥ 6 29.3 ≥ 8 8.2 春季 ≥ 6 20.7 ≥ 10 0.7 夏季 — 0 — 0 秋季 ≥ 8 5.6 — 0 -
[1] Kuperman W A, Ingenito F. Attenuation of the coherent component of sound propagating in shallow water with rough boundaries. J. Acoust. Soc. Am., 1977; 61(5): 1178—1187 doi: 10.1121/1.381417 [2] Weston D E, Ching P A. Wind effects in shallow-water acoustic transmission. J. Acoust. Soc. Am., 1989; 86(4): 1530—1545 doi: 10.1121/1.398713 [3] 王鸿樟. 随机起伏表面引起的声音传播衰减. 声学学报, 1986; 11(3): 160—172 doi: 10.15949/j.cnki.0371-0025.1986.03.005 [4] 陈小泉, 马忠成. 小斜率近似方法分析粗糙界面声散射问题. 声学技术, 2009; 28(6): 725—728 doi: 10.3969/j.issn1000-3630.2009.06.009 [5] Kuo E Y T. Sea-surface scattering and propagation loss − Review, update, and new predictions. IEEE J. Oceanic Eng., 1988; 13(4): 229—234 doi: 10.1109/48.9235 [6] Thorsos E I, Jackson D R. The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am., 1989; 86(1): 261—277 doi: 10.1121/1.398342 [7] Thorsos E I. Acoustic scattering from a “Pierson–Moskowitz” sea surface. J. Acoust. Soc. Am., 1990; 88(1): 335—349 doi: 10.1121/1.399909 [8] Ghadimi P, Bolghasi A, Feizi Chekab M A. Sea surface effects on sound scattering in the Persian Gulf region based on empirical relations. J. Mar. Sci. Appl., 2015; 14(2): 113—125 doi: 10.1007/s11804-015-1306-x [9] Ghadimi P, Bolghasi A, Feizi Chekab M A. Acoustic simulation of scattering sound from a more realistic sea surface: consideration of two practical underwater sound sources. J. Braz. Soc. Mech. Sci. Eng., 2016; 38(3): 773—787 doi: 10.1007/s40430-014-0285-1 [10] Bolghasi A, Ghadimi P, Chekab M A F. Sound scattering from rough bubbly ocean surface based on modified sea surface acoustic simulator and consideration of various incident angles and sub-surface bubbles' radii. J. Mar. Sci. Appl., 2016; 15(3): 275—287 doi: 10.1007/s11804-016-1374-6 [11] 张灵珊, 彭朝晖. 粗糙海面对空气中声源激发水下声场的影响. 中国科学: 物理学 力学 天文学, 2014; 44(9): 896—906 doi: 10.1360/SSPMA2013-00064 [12] Yan J, Su X J, Xu D, et al. Sound transmission from air into shallow water through rough sea surfaces by small slope approximation. Chinese Journal of Acoustics, 2020; 39(1): 53—63 doi: 10.15949/j.cnki.0217-9776.2020.01.005 [13] Yan J, Su X J, Xu D. Sound transmission from air into deep ocean through rough sea surfaces by small slope approximation. Chinese Journal of Acoustics, 2016; 35(4): 359—370 doi: 10.15949/j.cnki.0217-9776.2016.04.004 [14] 陈文剑, 郎鹏远, 尹爽, 等. 起伏海面环境下水声信道特性及估计方法. 应用声学, 2018; 37(5): 722—731 doi: 10.11684/j.issn.1000-310X.2018.05.017 [15] Liu R Y, Li Z L. Effects of rough surface on sound propagation in shallow water. Chin. Phys. B, 2019; 28(1): 423—430 doi: 10.1088/1674-1056/28/1/014302 [16] 汪洋, 刘清宇, 鹿力成, 等. 海面风浪影响下的浅海声传播预报方法. 哈尔滨工程大学学报, 2020; 41(8): 1163—1169 doi: 10.11990/jheu.201909005 [17] 涂星滨. 风浪影响下的高频单载波水声通信技术. 博士学位论文, 厦门: 厦门大学, 2020: 41—54 [18] 王先华, 彭朝晖, 李整林. 海面波浪起伏对声传播的影响. 声学技术, 2007; 26(4): 551—556 doi: 10.3969/j.issn.1000-3630.2007.04.002 [19] 孟昭然, 孙辉. 随机起伏界面声散射的实验与理论研究. 声学技术, 2014; 33(4): 299—303 doi: 10.3969/j.issn1000-3630.2014.04.003 [20] Zou Z, Badiey M. Effects of wind speed on shallow-water broadband acoustic transmission. IEEE J. Oceanic Eng., 2018; 43(4): 1187—1199 doi: 10.1109/JOE.2017.2737049 [21] 刘今, 彭朝晖, 张灵珊, 等. 浅海涌浪对表面声道声传播的影响. 物理学报, 2021; 70(5): 195—204 doi: 10.7498/aps.70.20201549 [22] 姚美娟, 鹿力成, 郭圣明, 等. 小掠射角下高斯谱粗糙海面反射损失建模. 声学学报, 2018; 43(3): 315—322 doi: 10.15949/j.cnki.0371-0025.2018.03.006 [23] 冯丹平, 李伟清. 粗糙海面下的深海声传播特性. 舰船电子工程, 2021; 41(7): 189—192 doi: 10.3969/j.issn.1672-9730.2021.07.040 [24] 姚美娟, 鹿力成, 郭圣明, 等. 几种典型的粗糙海面下的声传播计算方法. 哈尔滨工程大学学报, 2019; 40(4): 781—785, 850 doi: 10.11990/jheu.201711056 [25] Williams K L, Thorsos E I, Elam W T. Examination of coherent surface reflection coefficient (CSRC) approximations in shallow water propagation. J. Acoust. Soc. Am., 2004; 116(4): 1975—1984 doi: 10.1121/1.1785617 [26] Hamilton E L. Geoacoustic modeling of the sea floor. J. Acoust. Soc. Am., 1980; 68(5): 1313—1340 doi: 10.1121/1.385100 -