Spatial aliasing-free broadband direction of arrival estimation under strong interference
-
摘要:
提出了基于改进频率差分(FD)技术的空间抗混叠波达方位(DOA)估计方法, 实现了阵元稀疏排布, 即在阵元间距远大于入射信号波长时, 存在栅瓣模糊情况下多水下声学目标的方位估计。首先, 确定目标方位角度搜索范围, 建立阵列信号处理模型, 对宽带信号不同频率成分之间进行频率差分处理, 从而降低信号频率以满足阵元稀疏排布阵列的空间奈奎斯特采样要求。然后, 基于投影子空间正交性检验(TOPS)算法构建一个对角变换矩阵, 利用对角酉变换矩阵正交性直接对阵列流形进行频率差分处理, 使其频率差分处理输出的信号个数与输入信号个数相等。最后, 进一步推导频率差分域等效目标方位与真实入射信号角度等价的条件, 并基于该等价条件进行频率筛选, 最终获得无模糊的空间方位谱结果。经仿真实验验证, 所提算法在信噪比为−10~20 dB范围内, 估计结果均方根误差低于0.1°, 有效抑制了栅瓣且受干扰强度影响较小。经海试数据验证, 所提算法可以有效估计出目标方位, 并避免空间混叠项干扰。所提空间抗混叠波达方位估计方法能够有效抑制栅瓣模糊, 提高目标方位估计精度, 且在强干扰条件下仍具有较好的角度估计性能。
Abstract:A spatial aliasing-free direction of arrival (DOA) estimation method based on improved frequency difference (FD) technology has been proposed, which achieves sparse array element arrangement, that is, when the array element spacing is much longer than the incident signal wavelength, the DOA estimation of multiple underwater acoustic targets in the presence of gate lobe ambiguity is achieved. Firstly, the target azimuth angle search range is determined, the array signal processing model is established, and the frequency difference processing is performed between the different frequency components of the wideband signal, so as to reduce the signal frequency to meet the spatial Nyquist sampling requirements of the array with sparse array elements. Then, based on the test of orthogonality of projected subspaces, a diagonal transformation matrix is constructed, and the orthogonality of the diagonal unitary transformation matrix is used to directly perform frequency difference processing on the array manifold, so that the number of signals output by the frequency difference processing is equal to the number of input signals. Finally, the condition for the equivalence between the equivalent target orientation and the true incident signal angle in the frequency difference domain is further derived, and frequency screening is performed based on this equivalence condition, ultimately obtaining a spatial orientation spectrum result without ambiguity. The simulation results show that the root-mean-square deviation of the proposed algorithm is less than 0.1° in the signal to noise ratio range of −10−20 dB, which effectively suppresses the gate lobe and is less affected by the interference intensity. Verified by sea experiment data, the proposed algorithm can effectively estimate the target orientation and avoid spatial aliasing interference. The proposed spatial aliasing-free DOA estimation method can effectively suppress gate lobe ambiguity, improve target direction estimation accuracy, and still have good angle estimation performance under strong interference conditions.
-
Key words:
- Direction of arrival /
- Aliasing-free /
- Frequency-difference technique /
- Subspace
-
表 1 本文所提方法的算法流程
输入: 阵列接收信号$ {{\boldsymbol{x}}_l}({f_q}) $, 阵元个数M, 阵元间距$ d $, 声波在水中的传播速度$ c $, FFT点数$ Q $, 时间间隔段数L 1. 设置搜索范围
定义测试角度方位扫描网格为$\varTheta $; 设置$i = 1$, 且${\vartheta _i} \in \varTheta $;
2. 设计对角变换矩阵
将接收信号转化为式(3)中的频域阵列输出矩阵$ {{\boldsymbol{x}}_l}({f_q}) $;
设计对角变换矩阵$ {\boldsymbol{\varPhi }}({f_q} - \Delta f,\vartheta ) $;
根据$ {{\boldsymbol{x}}_l}({f_q}) $和$ {\boldsymbol{\varPhi }}({f_q} - \Delta f,\vartheta ) $, 利用式(11)计算频率差值$ \Delta f $的阵列输出矩阵$ {{\boldsymbol{\widetilde x}}_l}({f_q}) $;
3. 计算等效协方差矩阵
利用式(5)计算接收信号的采样协方差矩阵$ {{\boldsymbol{\widehat R}}_{{f_q}}} $;
利用式(12)计算差分频率$ \Delta f $上的等效协方差矩阵$\overline {\boldsymbol R}_{\Delta f}^{}$;
4. 估计方位谱
① 令$ {f_q}{\text{ = }}{f_{{q_L}}} + \Delta f $, 利用式(17)计算方位谱$ P\left( {{f_q},{\vartheta _i},\theta } \right) $, 并搜索峰值;
② 判断峰值角度与测试角度${\vartheta _i}$的差值是否小于设定的阈值$h$;
③ 如果小于阈值$h$, 存储方位谱值$ P\left( {{f_q},{\vartheta _i},\theta } \right) $;
④ 令$q = q + 1$, 重复步骤②和③, 直至$ {f_q}{\text{ = }}{f_{{q_H}}} $, 计算满足条件的频率个数$ D = \dim \left\{ {{f_q}\left| {\left| {{{\overline \theta }_k} - {\vartheta _i}} \right| < h,{f_{{q_L}}} + \Delta f \leqslant {f_q} \leqslant {f_{{q_H}}}} \right.} \right\} $;
⑤ 利用式(14)计算抗混叠方位谱${\boldsymbol{P}}\left( {{\vartheta _i}} \right)$;
5. 遍历搜索范围
令$i = i + 1$, 重复步骤2 ~ 4, 计算每个${\vartheta _i}$下的${\boldsymbol{P}}\left( {{\vartheta _i}} \right)$, 直到$i$大于等于扫描网格${{\varTheta}} $的最大维度;输出: 目标估计方位谱${\boldsymbol{P}}$, $\vartheta \in {{\varTheta}} $ -
[1] 杨龙, 杨益新, 汪勇, 等. 一种改进的稀疏近似最小方差DOA估计算法研究. 声学学报, 2016; 41(4): 465—476 doi: 10.15949/j.cnki.0371-0025.2016.04.003 [2] 孙大军, 张珂, 梅继丹, 等. 稀疏矢量阵信号栅瓣及对称伪峰干扰抑制. 声学学报, 2021; 46(1): 23—34 doi: 10.15949/j.cnki.0371-0025.2021.01.003 [3] 柳艾飞, 杨德森, 时胜国, 等. 各向同性噪声场中单矢量传感器虚源消除MUSIC测向方法. 声学学报, 2019; 44(4): 698—706 doi: 10.15949/j.cnki.0371-0025.2019.04.030 [4] 康春玉, 李文哲, 夏志军, 等. 盲重构频域阵列信号的压缩感知水声目标方位估计. 声学学报, 2019; 44(6): 951—960 doi: 10.15949/j.cnki.0371-0025.2019.06.001 [5] Dmochowski J, Benesty J, Affès S. On spatial aliasing in microphone arrays. IEEE Trans. Signal Process., 2009; 57(4): 1383—1395 doi: 10.1109/TSP.2008.2010596 [6] Shin J W, Lee Y J, Kim H N. Reduced-complexity maximum likelihood direction-of-arrival estimation based on spatial aliasing. IEEE Trans. Signal Process., 2014; 62(24): 6568—6581 doi: 10.1109/TSP.2014.2367454 [7] 李学敏, 黄海宁, 李宇, 等. 采用条件波数谱密度函数的宽带高分辨方位谱估计算法. 声学学报, 2019; 44(4): 585—594 doi: 10.15949/j.cnki.0371-0025.2019.04.019 [8] Yang Y, Zhang Y, Yang L. Wideband sparse spatial spectrum estimation using matrix filter with nulling in a strong interference environment. J. Acoust. Soc. Am., 2018; 143(6): 3891—3898 doi: 10.1121/1.5042406 [9] Reddy V V, Khong A W H, Ng B P. Unambiguous speech DOA estimation under spatial aliasing conditions. IEEE/ACM Trans. Audio Speech Lang. Process., 2014; 22(12): 2133—2145 doi: 10.1109/TASLP.2014.2344856 [10] Rafaely B, Weiss B, Bachmat E. Spatial Aliasing in Spherical Microphone Arrays. IEEE Trans. Signal Process., 2007; 55(3): 1003—1010 doi: 10.1109/TSP.2006.888896 [11] Tang Z, Blacquiere G, Leus G. Aliasing-free broadband beamforming using sparse signal representation. IEEE Trans. Signal Process., 2011; 59(7): 3464—3469 doi: 10.1109/TSP.2011.2140108 [12] Sabra K G, Dowling D R. Blind deconvolution in ocean waveguides using artificial time reversal. J. Acoust. Soc. Am., 2004; 116(1): 262—271 doi: 10.1121/1.1751151 [13] Abadi S H, Song H C, Dowling D R. Broadband sparse-array blind deconvolution using frequency-difference beamforming. J. Acoust. Soc. Am., 2012; 132(5): 3018—3029 doi: 10.1121/1.4756920 [14] Worthmann B M, Song H C, Dowling D R. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing. J. Acoust. Soc. Am., 2015; 137(4): 3549—3562 doi: 10.1121/1.4936856 [15] Douglass A S, Song H C, Dowling D R. Performance comparisons of frequency-difference and conventional beamforming. J. Acoust. Soc. Am., 2017; 142(3): 1663—1673 doi: 10.1121/1.5003787 [16] Douglass A S, Dowling D R. Frequency-difference beamforming in the presence of strong random scattering. J. Acoust. Soc. Am., 2019; 146(1): 122—134 doi: 10.1121/1.5114811 [17] Xie L, Sun C, Tian J. Deconvolved frequency-difference beamforming for a linear array. J. Acoust. Soc. Am., 2020; 148(6): EL440—EL446 doi: 10.1121/10.0002927 [18] Yang L, Wang Y, Yang Y. Aliasing-free broadband direction of arrival estimation using a frequency-difference technique. J. Acoust. Soc. Am., 2021; 150(6): 4256—4267 doi: 10.1121/10.0008900 [19] 张涛麟, 刘颖, 廖桂生. 一种未知信源数的高分辨DOA估计算法. 电子与信息学报, 2008; 30(2): 375—378 doi: 10.3724/SP.J.1146.2006.01020 [20] 鄢社锋, 马远良, 侯朝焕. 宽带波束域相干信号子空间高分辨方位估计. 声学学报, 2006; 31(5): 418—424 doi: 10.15949/j.cnki.0371-0025.2006.05.005 [21] Yoon Y S, Kaplan L M, Mcclellan J H. TOPS: New DOA estimator for wideband signals. IEEE Trans. Signal Process., 2006; 54(6): 1977—1989 doi: 10.1109/TSP.2006.872581 [22] 鄢社锋, 马远良. 传感器阵列波束优化设计及应用. 北京: 科学出版社, 2009: 230—233 -