The effects of adult attachment style on acoustic characteristics of emotional speech
-
摘要:
为探究说话人的依恋类型(安全型、超脱型、专注型、恐惧型)对情绪语音产出的影响, 设计了符合语法规则但是无意义的伪句, 招募了有恋爱经验的被试, 采用阈下词汇启动范式激活依恋系统后, 被试观看4种基本情绪(开心、愤怒、悲伤、恐惧)的诱发影片, 用体验到的情绪向想象中的恋爱伴侣说出这些句子。对递归特征消除算法筛选出的每句14个声学参数做半参数重复测量多元方差, 结果显示依恋类型和情绪类别的主效应显著、交互效应不显著; 聚集性分层聚类分析发现, 在声学特征空间中, 超脱型和专注型距离最近, 而安全型则远离其他类型; 有监督分类发现, 14个声学参数可有效区分4类依恋类型; 特征重要性分析发现, 韵律参数对分类的贡献较大; 累积局部轮廓分析发现, 4类人群间基频特征的差异在各种情绪上基本一致, 但是音质特征的差异受到情绪类别的影响。研究揭示了依恋类型对情绪语音声学特征的作用, 验证了不同依恋类型在情绪调节策略上的差异, 为个性化人机语音交互技术的发展提供了科学依据。
Abstract:This study explored the effect of a speaker’s attachment style (secure, detached, preoccupied, and fearful) on acoustic characteristics of emotional speech. Grammatical but meaningless pseudo sentences were designed, and participants with romantic relationship experiences were recruited. After activating their attachment systems with the subliminal lexical priming paradigm, the participants watched the videos that tended to evoke one of the four basic emotions (happiness, anger, sadness, and fear). Following this, they expressed these sentences with the corresponding emotions to their imagined romantic partners. Based on 14 acoustic parameters per utterance selected using the recursive feature elimination algorithm, Semi-Parametric Repeated Measures Multivariate Analysis of Variance shows significant main effects of attachment style and emotion type, but does not show a significant interaction effect between them. Agglomerative Hierarchical Cluster Analysis shows that, in the acoustic space, “dismissing” and “preoccupied” are the closest, while “secure” is the farthest from other attachment styles. Supervised classification algorithms effectively differentiate the four attachment styles based on 14 acoustic parameters, with prosodic parameters contributing more in terms of feature importance analysis. Furthermore, Accumulated-Local Profiles analysis indicates that the variations in fundamental frequency characteristics among the four attachment styles remain basically consistent across the four emotions, but the differences in timbre and voice quality characteristics are influenced by emotion type. In summary, this study unveils the impact of attachment style on emotional speech and confirms the variations in emotion regulation strategy among individuals with four attachment styles. This provides a scientific foundation for the development of personalized human-machine speech communication technologies.
-
表 1 不同依恋类型被试的基本信息比较
背景变量 总计
N = 48安全型
N = 18超脱型
N = 7专注型
N = 7恐惧型
N = 16四类比较的p值 离散变量的分布 性别 0.391 女 35 (73%) 15 (83%) 6 (86%) 4 (57%) 10 (62%) 男 13 (27%) 3 (17%) 1 (14%) 3 (43%) 6 (38%) 恋爱次数 0.505 1 18 (38%) 7 (39%) 3 (43%) 4 (57%) 4 (25%) 2 18 (38%) 8 (44%) 1 (14%) 2 (29%) 7 (44%) 3 8 (17%) 3 (17%) 1 (14%) 1 (14%) 3 (19%) 4 4 (8%) 0 (0%) 2 (29%) 0 (0%) 2 (12%) 是否正在恋爱 < 0.001 否 18 (38%) 1 (6%) 3 (43%) 3 (43%) 11 (69%) 是 30 (62%) 17 (94%) 4 (57%) 4 (57%) 5 (31%) 是否异地恋 0.489 否 12 (40%) 7 (41%) 3 (75%) 1 (25%) 1 (20%) 是 18 (60%) 10 (59%) 1 (25%) 3 (75%) 4 (80%) 连续变量的
均值(标准差)年龄 24.10 (3.08) 23.78 (2.02) 24.43 (3.51) 23.71 (0.95) 24.50 (4.40) 0.878 年龄绝对差值 6.67 (6.39) 7.29 (6.79) 4.50 (4.43) 6.75 (5.62) 6.20 (8.17) 0.748 恋爱阶段 2.90 (0.80) 2.76 (0.83) 3.25 (0.96) 3.50 (0.58) 2.60 (0.55) 0.248 表 2 机器学习算法的分类预测结果
LDA SVM RF XGBT MPM 所有情绪 ACC (95%CI) 0.48 (0.45, 0.52) 0.81 (0.78, 0.83) 0.83 (0.80, 0.85) 0.82 (0.79, 0.84) 0.82 (0.79, 0.85) F1 0.52; 0.40; 0.49; 0.49 0.87; 0.76; 0.73; 0.80 0.88; 0.80; 0.70; 0.84 0.87; 0.79; 0.73; 0.81 0.86; 0.78; 0.74; 0.83 开心 ACC (95%CI) 0.47 (0.40, 0.54) 0.72 (0.65, 0.78) 0.78 (0.72, 0.84) 0.80 (0.74, 0.85) 0.69 (0.62, 0.75) F1 0.54; 0.32; 0.54; 0.43 0.82; 0.69; 0.65; 0.63 0.84; 0.76; 0.71; 0.76 0.84; 0.79; 0.72; 0.78 0.76; 0.62; 0.68; 0.62 愤怒 ACC (95%CI) 0.41 (0.34, 0.48) 0.66 (0.59, 0.72) 0.74 (0.68, 0.80) 0.73 (0.67, 0.79) 0.66 (0.59, 0.72) F1 0.51, 0.30; 0.45; 0.35 0.75; 0.52; 0.48; 0.69 0.83; 0.72; 0.60; 0.73 0.82; 0.71; 0.58; 0.72 0.76; 0.55; 0.57; 0.64 悲伤 ACC (95%CI) 0.51 (0.44, 0.58) 0.78 (0.72, 0.84) 0.74 (0.67, 0.79) 0.74 (0.67, 0.79) 0.75 (0.68, 0.80) F1 0.55; 0.49; 0.49; 0.51 0.78; 0.78; 0.63; 0.86 0.74; 0.80; 0.68; 0.72 0.74; 0.86; 0.64; 0.72 0.76; 0.78; 0.60; 0.78 恐惧 ACC (95%CI) 0.48 (0.41, 0.55) 0.74 (0.67, 0.79) 0.76 (0.70, 0.82) 0.72 (0.66, 0.78) 0.67 (0.61, 0.74) F1 0.55; 0.39; 0.40; 0.50 0.78; 0.72; 0.67; 0.72 0.83; 0.64; 0.64; 0.78 0.78; 0.62; 0.60; 0.75 0.74; 0.57; 0.61; 0.68 注: ACC为准确率, 4个F1值分别对应安全型、超脱型、专注型和恐惧型。灰色单元指预测效果最佳的模型。 A1 纳入正式实验的15个目标伪句
目标句 自然度均值 自然度标准差 句长
(音节数)你们泡到羊表里 3.60 1.59 7 他们踩到道杯中 3.73 1.33 7 他们往车桌里排 3.67 1.23 7 我们到尾边打澡 4.13 1.06 7 你角里铺着个豆仔 4.07 1.33 8 你们在光海上跳球 4.40 0.83 8 你在排房上晒春某 4.53 0.64 8 他的发签上沾了麻 4.27 1.10 8 他的胎上有个表票 3.80 1.47 8 他在坊门里唱了一个绳 4.20 1.01 10 她从包盒里拿出一个诗 4.60 0.63 10 你们到线桥上切了一个棋 3.93 1.28 11 他们从角客里偷了一个盘 4.73 0.59 11 她们到枕尺里救了一个盐 4.00 1.51 11 我们去心沙里丢了一个发 3.73 1.62 11 -
[1] Banse R, Scherer K R. Acoustic profiles in vocal emotion expression. J. Pers. Soc. Psychol., 1996; 70(3): 614—636 doi: 10.1037/0022-3514.70.3.614 [2] Laukka P, Juslin P, Bresin R. A dimensional approach to vocal expression of emotion. Cogn. Emot., 2005; 19(5): 633—653 doi: 10.1080/02699930441000445 [3] Bryant G A. Vocal communication across cultures: Theoretical and methodological issues. Philos. Trans. R. Soc. Lond. , B, Biol. Sci., 2022; 377(1841): 20200387 doi: 10.1098/rstb.2020.0387 [4] Marrero Z N, Gosling S D, Pennebaker J W, et al. Evaluating voice samples as a potential source of information about personality. Acta. Psychol., 2022; 230: 103740 doi: 10.1016/j.actpsy.2022.103740 [5] Bowlby J M. Attachment and loss: Attachment (vol. 1). London: Random House, 1969 [6] Mikulincer M, Shaver P R. Attachment in adulthood: Structure, dynamics, and change. 2nd ed. New York: The Guilford Press, 2016 [7] Bartholomew K, Horowitz L M. Attachment styles among young adults: A test of a four-category model. J. Pers. Soc. Psychol., 1991; 61(2): 226—244 doi: 10.1037/0022-3514.61.2.226 [8] Brennan K A, Clark C L, Shaver P R. Self-report measurement of adult attachment: An integrative overview. In: Simpson J A, Rholes W S (Eds.), Attachment theory and close relationships. New York: The Guilford Press, 1998: 46—76 [9] 黄于飞, 史攀, 陈旭. 依恋对情绪调节过程的影响. 心理科学进展, 2022; 30(1): 77—84 doi: 10.3724/SP.J.1042.2022.00077 [10] Mikulincer M, Shaver P R. Attachment orientations and emotion regulation. Curr. Opin. Psychol., 2019; 25: 6—10 doi: 10.1016/j.copsyc.2018.02.006 [11] Troyer D, Greitemeyer T. The impact of attachment orientations on empathy in adults: Considering the mediating role of emotion regulation strategies and negative affectivity. Pers. Individ. Dif., 2018; 122: 198—205 doi: 10.1016/j.paid.2017.10.033 [12] Winterheld H A. Calibrating use of emotion regulation strategies to the relationship context: An attachment perspective. J. Pers., 2016; 84(3): 369—380 doi: 10.1111/jopy.12165 [13] Walker S A, Double K S, Kunst H, et al. Emotional intelligence and attachment in adulthood: A meta-analysis. Pers. Individ. Dif., 2022; 184: 111174 doi: 10.1016/j.paid.2021.111174 [14] Gross J J. Emotion regulation: Current status and future prospects. Psychol. Inq., 2015; 26(1): 1—26 doi: 10.1080/1047840X.2014.940781 [15] Ilie G, Thompson W F. A comparison of acoustic cues in music and speech for three dimensions of affect. Music Percept., 2006; 23(4): 319—330 doi: 10.1525/mp.2006.23.4.319 [16] Johnstone T, Scherer K R. Vocal communication of emotion. In: Lewis M, Haviland J (Eds.), Handbook of Emotions. New York: The Guliford Press, 2000 [17] Scherer K R. Acoustic patterning of emotion vocalizations. In: Frühholz S, Belin P (Eds.), The Oxford handbook of voice perception. Oxford: Oxford University Press, 2018 [18] Gobl C, Chasaide A N. The role of voice quality in communicating emotion, mood and attitude. Speech Commun., 2003; 40(1-2): 189—212 doi: 10.1016/S0167-6393(02)00082-1 [19] Yanushevskaya I, Ni Chasaide A, Gobl C. Voice parameter dynamics in portrayed emotions. In: Manfredi C (Ed.), Models and Analysis of Vocal Emissions for Biomedical Applications. Florence: Firenze University Press, 2009 [20] Murray I R, Arnott J L. Toward the simulation of emotion in synthetic speech: A review of the literature on human vocal emotion. J. Acoust. Soc. Am., 1993; 93(2): 1097—1108 doi: 10.1121/1.405558 [21] Spinelli M, Fasolo M, Coppola G, et al. It is a matter of how you say it: Verbal content and prosody matching as an index of emotion regulation strategies during the Adult Attachment Interview. Int. J. Psychol., 2019; 54(1): 102—107 doi: 10.1002/ijop.12415 [22] Monti E, Kidd D C, Carroll L M, et al. What’s in a singer’s voice: The effect of attachment, emotions and trauma. Logoped. Phoniatr. Vocol., 2017; 42(2): 62—72 doi: 10.3109/14015439.2016.1166394 [23] 胡涵, 顾文涛. 个体依恋风格对亲密话语韵律及嗓音特征的影响. 声学学报, 2022; 47(2): 276—286 doi: 10.15949/j.cnki.0371-0025.2022.02.013 [24] 徐鹏飞, 黄宇霞, 罗跃嘉. 中国情绪影像材料库的初步编制和评定. 中国心理卫生杂志, 2010; 24(7): 551—555 doi: 10.3969/j.issn.1000-6729.2010.07.017 [25] Liu P, Pell M D. Recognizing vocal emotions in Mandarin Chinese: A validated database of Chinese vocal emotional stimuli. Behav. Res. Methods, 2012; 44(4): 1042—1051 doi: 10.3758/s13428-012-0203-3 [26] 李同归. 成人依恋的测量: 亲密关系经历量表(ECR)中文版. 心理学报, 2006; 38(3): 399—406 [27] Psychology Software Tools, Inc. E-Prime 3.0. https://support.pstnet.com/, 2016 [28] Mikulincer M, Gillath O, Shaver P R. Activation of the attachment system in adulthood: Threat-related primes increase the accessibility of mental representations of attachment figures. J. Pers. Soc. Psychol., 2002; 83(4): 881—895 doi: 10.1037/0022-3514.83.4.881 [29] Boersma P, Weenink D. Praat: Doing phonetics by computer. Version 6.2. 12. http://www.praat.org/, 2022 [30] 刘艺, 荣蓉. 汉语学习者陈述句音节音高的声学实验分析. 语言教学与研究, 2014(5): 35—41 [31] Hawks J W, Miller J D. A formant bandwidth estimation procedure for vowel synthesis. J. Acoust. Soc. Am., 1995; 97(2): 1343—1344 doi: 10.1121/1.412986 [32] Iseli M, Shue Y L, Alwan A. Age, sex, and vowel dependencies of acoustic measures related to the voice source. J. Acoust. Soc. Am., 2007; 121(4): 2283—2295 doi: 10.1121/1.2697522 [33] R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/, 2021 [34] Friedrich S, Pauly M. MATS: Inference for potentially singular and heteroscedastic MANOVA. J. Multivar. Anal., 2018; 165: 166—179 doi: 10.1016/j.jmva.2017.12.008 [35] Esposito C M. An acoustic and electroglottographic study of White Hmong tone and phonation. J. Phon., 2012; 40(3): 466—476 doi: 10.1016/j.wocn.2012.02.007 [36] Xu Y, Kelly A, Smillie C. Emotional expressions as communicative signals. In: Hirst D, Hancil S (Eds.), Prosody and iconicity. Amsterdam: John Benjamins, 2013 [37] Little L M, Nelson D L, Wallace J C, et al. Integrating attachment style, vigor at work, and extra–role performance. J. Organ. Behav., 2011; 32(3): 464—484 doi: 10.1002/job.709 [38] 杨青青, 胡娜, 陈旭, 等. 恋人亲密情景下的回避型与安全型依恋个体情绪调节电生理差异. 心理学报, 2018; 50(3): 306—316 doi: 10.3724/SP.J.1041.2018.00306 [39] Keating P A, Garellek M, Kreiman J. Acoustic properties of different kinds of creaky voice. The 18th International Congress of Phonetic Sciences, Glasgow, UK, 2015 [40] Gussenhoven C. The phonology of tone and intonation. Cambridge: Cambridge University Press, 2004 [41] 耿浦洋, 顾文涛, 曹文. 汉语态度语音的韵律, 嗓音和调音运动特征. 语言研究集刊, 2020; 26: 322—341 -