Analysis of factors impacting 3D auditory localization accuracy and response time in headphone reproduction
-
摘要:
探究了基于头相关传输函数(HRTF)的三维听觉显示中, 重放方式(动态/稳态重放)、HRTF种类(个性化/非个性化HRTF)、被试类型(有/无测听经验)三个因素对三维听觉显示定位精度和反应时间的影响。实验结果表明, 重放方式对听觉定位的影响显著, 动态重放的定位效果明显优于稳态重放, 该结论对于有测听经验以及无测听经验的受试者均成立; HRTF种类对听觉定位也具有较大影响, 个性化HRTF的定位效果优于非个性化HRTF, 具有测听经验的受试者较无测听经验的受试者能更好利用个性化HRTF; 具有测听经验的受试者在各个实验条件下所需的定位反应时间更短。相关结果可为三维听觉显示技术的真正应用提供重要参考。
Abstract:This paper investigates the effects of three factors, i.e. reproduction mode (dynamic/static), head-related transfer function (HRTF) type (individual/non-individual HRTF), and participant type (experienced/inexperienced listeners), on the localization accuracy and response time in three-dimensional auditory display based on the HRTF. Experimental results demonstrate the significant influence of the reproduction mode on auditory localization, with dynamic reproduction outperforming static reproduction. This finding holds true for both experienced and inexperienced participants. Moreover, the HRTF type exhibits a substantial impact on auditory localization, with personalized HRTF yielding superior results compared to non-personalized HRTF. Participants with listening experience perform better when using personalized HRTF compared to those without experience. Additionally, participants with listening experience exhibit shorter response times for localization across all experimental conditions. These findings provide valuable insights for the practical application of three-dimensional auditory displays.
-
Key words:
- Binaural rendering /
- Auditory localization /
- Localization accuracy /
- Response time
-
表 1 测听实验所采用的目标方向
俯仰角 (°) 水平角 (°) −30, 0, 30, 60 0, 30, 150, 180, 240, 300 表 2 不同实验条件下的平均定位误差 (单位: °)
被试类型 重放方式 HRTF种类 水平角误差
(均值 ± 标准误差)俯仰角误差
(均值 ± 标准误差)有测听经验 动态重放 个性化HRTF 8.0±2.1 12.7±2.0 非个性化HRTF 10.5±1.8 15.5±3.0 稳态重放 个性化HRTF 13.1±3.3 15.8±1.0 非个性化HRTF 15.0±3.6 18.8±2.5 无测听经验 动态重放 个性化HRTF 12.1±3.9 15.6±1.3 非个性化HRTF 13.3±3.1 18.0±0.9 稳态重放 个性化HRTF 15.8±2.1 19.6±2.1 非个性化HRTF 17.3±2.0 20.3±2.9 表 3 定位结果的上下混乱率和前后混乱率 (单位: %)
被试类型 重放方式 HRTF种类 上下混乱率
(均值 ± 标准误差)前后混乱率
(均值 ± 标准误差)有测听经验 动态重放 个性化HRTF 6.5 ± 4.8 0.3 ± 0.6 非个性化HRTF 11.1 ± 7.5 1.0 ± 0.6 稳态重放 个性化HRTF 11.6 ± 1.5 24.0 ± 3.7 非个性化HRTF 15.3 ± 5.6 35.1 ± 5.0 无测听经验 动态重放 个性化HRTF 18.5 ± 4.1 6.6 ± 4.8 非个性化HRTF 20.4 ± 4.7 7.3 ± 3.3 稳态重放 个性化HRTF 23.6 ± 10.4 35.8 ± 7.4 非个性化HRTF 23.6 ± 9.1 40.6 ± 6.9 表 4 定位所需的反应时间(单位: s)
被试类型 重放方式 HRTF种类 反应时间
(均值 ± 标准误差)有测听经验 动态重放 个性化HRTF 11.40 ± 2.51 非个性化HRTF 15.46 ± 3.70 稳态重放 个性化HRTF 10.90 ± 4.40 非个性化HRTF 12.77 ± 5.21 无测听经验 动态重放 个性化HRTF 17.97 ± 5.00 非个性化HRTF 20.61 ± 6.54 稳态重放 个性化HRTF 12.63 ± 3.77 非个性化HRTF 13.28 ± 4.36 A1 测听实验中受试者情况分布
有测听经验的受试者 无测听经验的受试者 编号 性别 年龄(岁) 已参与测听实验次数 编号 性别 年龄 (岁) 已参与测听实验次数 1 女 27 2 1 女 30 0 2 女 33 1 2 男 25 0 3 男 29 3 3 男 33 0 4 女 30 1 4 男 26 0 5 男 30 1 5 女 29 0 6 男 25 2 6 女 26 0 -
[1] 谢菠荪. 头相关传输函数与虚拟听觉. 北京: 国防工业出版社, 2008 [2] 覃龙靖, 王鑫, 谢凌云. 三维声双耳渲染算法的客观评测与分析. 复旦学报:自然科学版, 2023; 62(1): 53—62 doi: 10.15943/j.cnki.fdxb-jns.20230208.005 [3] Wenzel E M, Arruda M, Kistler D J, et al. Localization using non-individualized head-related transfer functions. J. Acoust. Soc. Am., 1993; 94(1): 111—123 doi: 10.1121/1.407089 [4] Romigh G D, Simpson B D. Do you hear where I hear? Isolating the individualized sound localization cues. Front. Neurosci., 2014; 8: 370—380 doi: 10.3389/fnins.2014.00370 [5] Jiang J, Xie B, Mai H, et al. The role of dynamic cue in auditory vertical localization. Appl. Acoust., 2019; 146: 398—408 doi: 10.1016/j.apacoust.2018.12.002 [6] Wallach H. On sound localization. J. Acoust. Soc. Am., 1939; 10(4): 270—274 doi: 10.1121/1.1915985 [7] Wallach H. The role of head movements and vestibular and visual cues in sound localization. J. Exp. Psychol., 1940; 27(4): 339—368 doi: 10.1037/h0054629 [8] Perrett S, Noble W. The effect of head rotations on vertical plane sound localization. J. Acoust. Soc. Am., 1997; 102(4): 2325—2332 doi: 10.1121/1.419642 [9] Rao D, Xie B. Head rotation and sound image localization in the median plane. Chin. Sci. Bull., 2005; 50(5): 412—416 doi: 10.1007/BF02897454 [10] 黄劲文, 杨飞然, 杨军. 头部跟踪器的虚拟声源定位系统. 网络新媒体技术, 2019; 8(2): 28—35 doi: 10.3969/j.issn.2095-347X.2019.02.005 [11] Majdak P, Walder T, Laback B. Effect of long-term training on sound localization performance with spectrally warped and band-limited head-related transfer functions. J. Acoust. Soc. Am., 2013; 134(3): 2148—2159 doi: 10.1121/1.4816543 [12] Trapeau R, Aubrais V, Schönwiesner M. Fast and persistent adaptation to new spectral cues for sound localization suggests a many-to-one mapping mechanism. J. Acoust. Soc. Am., 2016; 140(2): 879—890 doi: 10.1121/1.4960568 [13] Majdak P, Goupell M J, Laback B. 3-D localization of virtual sound sources: Effects of visual environment, pointing method, and training. Atten. Percept. Psychophys., 2010; 72(2): 454—469 doi: 10.3758/APP.72.2.454 [14] 全国声学标准化委员会. 声学 声压法测定噪声源声功率级 消声室和半消声室精密法: GB/T 6882—2008. 北京: 中国标准出版社, 2008 [15] Guo X, Xiong D, Wang Y, et al. Head-related transfer function database of Chinese male pilots. In: Long S, Dhillon B (eds). Man-machine-environment system engineering. Springer, Singapore, 2016 [16] Zhang C Y, Xie B S. Platform for dynamic virtual auditory environment real-time rendering system. Chin. Sci. Bull., 2013; 58(3): 316—327 doi: 10.1007/s11434-012-5523-2 [17] Romigh G D, Brungart D S, Stern R M, et al. Efficient real spherical harmonic representation of head-related transfer functions. IEEE J. Sel. Top. Signal Process., 2015; 9(5): 921—930 doi: 10.1109/JSTSP.2015.2421876 [18] Sandvad J. Dynamic aspects of auditory virtual environments. Audio Engineering Society Convention 100, Audio Engineering Society, Copenhagen, Denmark, 1996 [19] Brungart D, Kordik A J, Simpson B D. Effects of head tracker latency in virtual audio displays. J. Audio Eng. Soc., 2006; 54(12): 32—44 [20] 吕燚, 潘皓, 李锋, 等. 三维音频技术在航空领域的应用与展望. 电讯技术, 2015; 55(11): 1304—1310 doi: 10.3969/j.issn.1001-893x.2015.11.020 [21] Perrott D R, Saberi K. Minimum audible angle thresholds for sources varying in both elevation and azimuth. J. Acoust. Soc. Am., 1990; 87(4): 1728—1731 doi: 10.1121/1.399421 [22] Bălan O, Moldoveanu A, Moldoveanu F, et al. Perceptual feedback training for improving spatial acuity and resolving front-back confusion errors in virtual auditory environments. The 40th International Conference on Telecommunications and Signal Processing (TSP), IEEE, Barcelona, Spain, 2017: 334-337 [23] Nisha K V, Kumar A U. Effects of spatial training paradigms on auditory spatial refinement in normal-hearing listeners: A comparative study. J. Audiol. Otol., 2022; 26(3): 113—121 doi: 10.7874/jao.2021.00451 -