EI / SCOPUS / CSCD 收录

中文核心期刊

张豪, 甄冬, 刘英辉, 冯国金, 张浩. 采用四阶累积量多重矩阵重构的低信噪比相干声源波达方向估计[J]. 声学学报, 2023, 48(2): 337-346. DOI: 10.15949/j.cnki.0371-0025.2023.02.004
引用本文: 张豪, 甄冬, 刘英辉, 冯国金, 张浩. 采用四阶累积量多重矩阵重构的低信噪比相干声源波达方向估计[J]. 声学学报, 2023, 48(2): 337-346. DOI: 10.15949/j.cnki.0371-0025.2023.02.004
ZHANG Hao, ZHEN Dong, LIU Yinghui, FENG Guojin, ZHANG Hao. Fourth-order cumulant multiple matrix reconstruction to estimate direction of arrival for coherent sound source under low signal-to-noise ratio[J]. ACTA ACUSTICA, 2023, 48(2): 337-346. DOI: 10.15949/j.cnki.0371-0025.2023.02.004
Citation: ZHANG Hao, ZHEN Dong, LIU Yinghui, FENG Guojin, ZHANG Hao. Fourth-order cumulant multiple matrix reconstruction to estimate direction of arrival for coherent sound source under low signal-to-noise ratio[J]. ACTA ACUSTICA, 2023, 48(2): 337-346. DOI: 10.15949/j.cnki.0371-0025.2023.02.004

采用四阶累积量多重矩阵重构的低信噪比相干声源波达方向估计

Fourth-order cumulant multiple matrix reconstruction to estimate direction of arrival for coherent sound source under low signal-to-noise ratio

  • 摘要: 针对相干声源子空间能量扩散且协方差矩阵欠秩难以有效估计波达方向(DOA)的问题, 提出了一种采用高阶矩阵变换的估计方法−四阶累积量多重矩阵重构(FOC-MMR)。该方法首先对阵列声压数据分帧进行短时傅里叶变换, 然后对四阶累积量扩展的高阶协方差矩阵进行奇异值分解(SVD)得到高阶噪声特征向量, 保证该噪声特征向量与扩展后的高阶阵列流形矢量正交匹配, 最终实现相干信号的DOA估计。相干单频矩形脉冲信号仿真结果表明, 将FOC-MMR方法应用于均匀线阵(ULA, M = 4), 在信噪比SNR ≥ −15 dB时, 相干信号(θ1 = −20°和θ2 = 20°)的均方根误差保持在1.5°以内; 在SNR = 10 dB时, 可正确分辨的两相干信号方位间隔\Delta \theta 可以低至5°。在相干脉冲声源实验中, 通过混入SNR = 5 dB高斯白噪声, 验证了FOC-MMR算法在应用于由多个ULA组成的矩形面阵时, 其分辨邻近声源和抑制高斯噪声的能力较高。FOC-MMR算法通过对声压阵列数据扩展得到满秩的高阶协方差矩阵, 不仅解决了由信号相干造成的噪声和信号特征向量之间能量扩散的问题, 还实现了以较高的测向精度和空间分辨率对广角入射的多组相干声源的DOA估计。

     

    Abstract: A direction of arrival (DOA) estimation method that adopts higher-order matrix transformation, named fourth-order cumulant multiple matrix reconstruction (FOC-MMR), is proposed to effectively estimate the DOA of the coherent sound sources which cause the subspace energy dispersion and under-rank of the covariance matrix. Firstly, short-time Fourier transform is performed on the array sound pressure data in frames. Secondly, singular value decomposition (SVD) of the fourth-order cumulant-expanded higher-order covariance matrix is calculated to obtain the higher-order noise eigenvectors, which are orthogonally matched with the expanded higher-order array manifold vector. Finally, DOA estimation of the coherent signals is achieved. The simulation results of coherent single-frequency rectangular pulse signal show that when the signal-to-noise ratio (SNR) ≥ −15 dB, applying the proposed method to the uniform linear array (ULA, M = 4), the root mean square error (RMSE) of coherent signals (θ1 = −20° and θ2 = 20°) remains within 1.5°. The correctly resolved azimuth interval \Delta \theta can be as low as 5° when the SNR = 10 dB. The coherent pulse sound source experiment mixed with SNR = 5 dB Gaussian white noise verifies that when applying the FOC-MMR algorithm to a rectangular area array composed of multiple ULAs, it can distinguish adjacent sound sources with a high degree of ability to suppress Gaussian noise. The proposed method achieves full-rank high-order covariance matrix by reconstructing the virtual sound pressure array data, which not only solves the problem of energy diffusion between noise and signal eigenvectors caused by signal coherence, but also the DOA estimation of multiple groups of coherent sound sources with wide-angle incidence is achieved with higher direction measurement accuracy and spatial resolution.

     

/

返回文章
返回