A track-before-detect method for neighboring targets based on auxiliary particle filter in passive sonar scenarios
-
摘要:
针对无源声呐多目标方位跟踪问题, 研究了一种基于粒子滤波的检测前跟踪方法, 关注于改善邻近目标和机动目标的跟踪性能。首先, 提出了一种考虑了邻近目标影响的似然函数; 其次, 采用辅助变量利用量测信息优化粒子采样, 当算法运动模型与目标实际运动状态失配时, 这种策略具有很大优势。结合以上两点, 提出了一种检测前跟踪算法, 该算法将邻近目标划分为一组, 使用邻近目标的预测状态计算目标的似然, 计算效率较高。利用仿真生成的数据和海上采集的实际数据分别验证了该算法的性能, 并与其他多目标粒子滤波检测前跟踪算法进行比较, 证明了该算法具有良好的跟踪性能。在目标邻近和目标机动的情况下, 该算法的优势更加明显。
Abstract:The problem of multiple target tracking based on particle filter in passive sonar is studied, which becomes more difficult when there are nearby targets and maneuvering targets in the observation space. First, a likelihood function considering the influence of neighboring targets is proposed. Second, the auxiliary variable is utilized to consider the measurement information in the particle sampling process. This strategy has great advantages when the actual motion of the target is mismatched with the dynamic model of the algorithm. Then, a track-before-detect algorithm is proposed, which divides the neighboring targets into a group and calculates the likelihood of the target by using the predicted states of the neighboring targets with high computational efficiency. The performance of the proposed algorithm is verified by simulation data and data collected at sea. Compared with other multi-target particle filter track-before-detect algorithms, the proposed algorithm has better tracking performance, especially in the presence of neighboring and maneuvering targets.
-
Key words:
- Bearing-only tracking /
- Track-before-detect /
- Particle filter /
- Target tracking
-
表 1 仿真实验具体结果
目标 真实方位 (°) 预测方位 (°) 估计方位 (°) IP PP APF 1 165.1 163.6 163.8 164.9 165.0 2 162.2 162.9 162.8 162.6 162.5 表 2 APP-TBD算法流程
输入(${ {{z} }_1},{ {{z} }_2}, \cdots ,{ {{z} }_K}$), K为总帧数 输出(${ {{\hat x} }_1},{ {{\hat x} }_2}, \cdots ,{ {{\hat x} }_K}$) 1. 初始化粒子及其权值 2. 使用式(15)对目标进行分群, 将邻近目标划分为一个群组 3. $j = 1\thicksim r$, $r$表示目标数目, 循环: 4. $n = 1\thicksim {n_p}$, ${n_p}$表示粒子总数, 循环: 5. 采样辅助变量${{{\boldsymbol{u}}} }_{k,j}^n = f\left( { {{{\boldsymbol{x}}} }_{k - 1,j}^n,{{{\boldsymbol{w}}} }_{k - 1,j}^n} \right)$ 6. 计算辅助变量的一阶权值$p({ {{{\boldsymbol{z}}} }_k}|{{{\boldsymbol{u}}} }_{k,j}^n,\widehat C_{k|k - 1}^{g - \{ j\} })$ 7. 结束循环, 归一化一阶权值 8. 根据一阶权值筛选优质粒子的编号$ {a_{j,1}},{a_{j,2}}, \cdots ,{a_{j,{n_p}}} $ 9. $n = 1\thicksim{n_p}$,循环: 10. 回溯到$k - 1$时刻, 采样优质粒子状态${{{\boldsymbol{x}}} }_{k,j}^n = f\left( { {{{\boldsymbol{x}}} }_{k - 1,j}^{ {a_{j,n} } },{{{\boldsymbol{w}}} }_{k - 1,j}^n} \right)$ 11. 计算粒子的一阶权值$p({ {{{\boldsymbol{z}}} }_k}|{{{\boldsymbol{x}}} }_{k,j}^n,\widehat C_{k|k - 1}^{g - \{ j\} })$ 12. 结束循环, 归一化一阶权值 13. 若有效粒子数目小于$0.8{n_p}$, 则进行重采样 14. 结束循环 15. 使用式(22)计算粒子的权值 16. 使用式(35)估计目标状态;返回步骤2, 开始下一帧 表 3 算法属性对比
算法 似然函数 考虑邻近
目标考虑量测
信息使用遗传
算子FIT-TBD FIT 否 否 否 CE-TBD CE 否 否 否 CEG-TBD CE 否 否 是 OGRAPF-TBD CE 否 否 是 PP-TBD PSF 是 否 否 APP-TBD PSF 是 是 否 -
[1] 孙旭, 李然威, 胡鹏. 目标机动未知下的有源声呐跟踪滤波方法. 声学学报, 2016; 41(3): 371—378 doi: 10.15949/j.cnki.0371-0025.2016.03.012 [2] 李晓花, 李亚安, 鲁晓锋, 等. 强干扰环境下水下纯方位PMHT多目标跟踪. 西北工业大学学报, 2020; 38(2): 359—365 doi: 10.3969/j.issn.1000-2758.2020.02.017 [3] 马艳, 刘小东. 状态自适应无迹卡尔曼滤波算法及其在水下机动目标跟踪中的应用. 兵工学报, 2019; 40(2): 361—368 doi: 10.3969/j.issn.1000-1093.2019.02.016 [4] 石桂欣, 鄢社锋, 刘宇. 水下目标跟踪的改进非线性滤波快速算法. 应用声学, 2020; 39(1): 89—96 doi: 10.11684/j.issn.1000-310X.2020.01.011 [5] 张程振, 丁元明, 杨阳. 水下目标跟踪粒子滤波算法性能分析. 火力与指挥控制, 2022; 47(2): 18—24 doi: 10.3969/j.issn.1002-0640.2022.02.004 [6] Hou X H, Yang L, Yang Y X, et al. Bearing-only underwater uncooperative target tracking for non-Gaussian environment using fast particle filter. IET Radar Sonar Navig., 2022; 16(3): 501—514 doi: 10.1049/rsn2.12198 [7] 李瑨瑶, 王海斌, 徐鹏, 等. 联合方位−径向速度的粒子滤波目标运动分析. 声学学报, 2019; 44(4): 523—533 doi: 10.15949/j.cnki.0371-0025.2019.04.013 [8] Fortmann T, Bar-Shalom Y, Scheffe M. Sonar tracking of multiple targets using joint probabilistic data association. IEEE J. Oceanic Eng., 1983; 8(3): 173—184 doi: 10.1109/JOE.1983.1145560 [9] Stone L D, Streit R L, Corwin T L, et al. Bayesian multiple target tracking. Artech House, 1999 [10] Salmond D J, Birch H. A particle filter for track-before-detect. Proceedings of the 2001 American Control Conference, 2001; 5: 3755—3760 [11] Morelande M, Ristic B. Signal-to-noise ratio threshold effect in track before detect. IET Radar Sonar Navig., 2009; 3(6): 601—608 doi: 10.1049/iet-rsn.2009.0017 [12] Northardt T, Nardone S C. Track-before-detect bearings-only localization performance in complex passive sonar scenarios: a case study. IEEE J. Oceanic Eng., 2019; 44(2): 482—491 doi: 10.1109/JOE.2018.2811419 [13] 金盛龙, 李宇, 黄海宁. 水下多目标方位的联合检测与跟踪. 声学学报, 2019; 44(4): 503—512 doi: 10.15949/j.cnki.0371-0025.2019.04.011 [14] 张春景, 柳晓鸣. 基于优化遗传重采样的辅助粒子滤波检测前跟踪方法. 电光与控制, 2022; 29(1): 23—27 doi: 10.3969/j.issn.1671-637X.2022.01.005 [15] Xu L X, Liu C Y, Wei Y, et al. A particle filter based track-before-detect procedure for towed passive array sonar system. IEEE Radar Conference, 2017: 1460—1465 [16] Pitt M K, Shephard N. Filtering via simulation: auxiliary particle filters. J. Am. Stat. Assoc., 1999; 94(446): 590—599 doi: 10.1080/01621459.1999.10474153 [17] Daum F, Huang J. Curse of dimensionality and particle filters. IEEE Aerospace Conference Proceedings. 2003; 4: 1979—1993 [18] Orton M, Fitzgerald W. A bayesian approach to tracking multiple targets using sensor arrays and particle filters. IEEE Trans. Signal Process., 2002; 50(2): 216—223 doi: 10.1109/78.978377 [19] Kreucher C, Kastella K, Hero A. Multitarget tracking using the joint multitarget probability density. IEEE Trans. Aerosp. Electron. Syst., 2005; 41(4): 1396—1414 doi: 10.1109/TAES.2005.1561892 [20] 徐超. 传感器点扩散函数对混合像元分解影响模拟研究. 博士学位论文, 长春: 中国科学院研究生院(东北地理与农业生态研究所), 2016 [21] Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput., 2000; 10(3): 197—208 doi: 10.1023/A:1008935410038 [22] Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process., 2002; 50(2): 174—188 doi: 10.1109/78.978374 [23] Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process., 2008; 56(8): 3447—3457 doi: 10.1109/TSP.2008.920469 -
计量
- 文章访问数: 395
- 被引次数: 0