On the improvement of power conversion efficiencies of parametric arrays
-
摘要:
针对参量阵转换效率低的问题, 提出了一种通过调节声源表面声阻抗率从而提高转换效率的方法。该方法依据描述声波非线性的Kuznetsov方程, 首先通过分析方程中拉格朗日密度对参量阵差频波的影响, 获得了拉格朗日密度与声源表面声阻抗率之间的关系式, 得出了通过调整声阻抗率可以提高参量阵转换效率的结论。随后提出了利用穿孔板改变声阻抗率的方法, 并通过数值仿真验证了该方法的有效性。结果表明, 通过在声源周围布置声穿孔板可以改变声阻抗率从而提高参量阵的转换效率。
-
关键词:
- Kuznetsov方程 /
- 拉格朗日密度 /
- 参量阵 /
- 差频波
Abstract:Due to the low power conversion efficiency of parametric array, a method proposed in this paper can be used to improve the power conversion efficiencies of parametric arrays by adjusting the specific acoustic impedance. The Kuznetsov equation that describes parametric arrays is first studied, and the influence of Lagrangian densities on difference-frequency waves is analyzed. And the relationship between the Lagrangian density and the acoustic impedance is obtained. Subsequently, the method of arranging perforated plates around the parametric array to adjust the acoustic impedance is proposed. The proposed method is validated through numerical simulations. The results show that this method can improve the power conversion efficiency of the parametric array by using perforated plates to change the acoustic impedance.
-
Key words:
- Kuznetsov equation /
- Lagrangian density /
- Parametric array /
- Difference frequency wave
-
[1] 钱祖文. 非线性声学概述. 物理, 1991; 20(5): 261—266 [2] 马大猷. 大振幅驻波理论. 声学学报, 1990; 15(5): 354—363 doi: 10.15949/j.cnki.0371-0025.1990.05.005 [3] Crighton D G. Propagation of finite-amplitude waves in fluids. John Wiley & Sons, Inc. , 2007: 203—217 [4] Westervelt P J. Parametric acoustic array. J. Acoust. Soc. Am., 1963; 35(4): 535—537 doi: 10.1121/1.1918525 [5] 曹娜, 陈时, 曹辉, 等. 非线性波动方程的新数值迭代方法. 物理学报, 2020; 69(3): 136—142 doi: 10.7498/aps.69.20191440 [6] 叶欣, 费兴波, 何申戌. 高强度聚焦超声治疗肿瘤. 国外医学: 肿瘤学分册, 2004; 31(1): 38—40 doi: 10.3760/cma.j.issn.1673-422X.2004.01.010 [7] Morris R H, Dey E R, Axford D, et al. Non-contact universal sample presentation for room temperature macromolecular crystallography using acoustic levitation. Sci. Rep., 2019; 9: 12431 doi: 10.1038/s41598-019-48612-4 [8] 陈伟中. 声空化物理. 北京: 科学出版社, 2014: 14—16 [9] Burns P N, Simpson D H, Averkiou M A. Nonlinear imaging. Ultrasound Med. Biol., 2000; 26(S1): 19—22 doi: 10.1016/s0301-5629(00)00155-1 [10] Gan W S. A review of parametric acoustic array in air. Appl. Acoust., 2012; 73(12): 1211—1219 doi: 10.1016/j.apacoust.2012.04.001 [11] Berktay H O. Possible exploitation of non-linear acoustics in underwater transmitting applications. J. Sound Vib., 1965; 2(4): 435—461 doi: 10.1016/0022-460X(65)90122-7 [12] Bennett M B, Blackstock D T. Parametric array in air. J. Acoust. Soc. Am., 1975; 57(3): 562—568 doi: 10.1121/1.380484 [13] 黄奎万, 赵玉芳, 杨继良. 关于参量阵中伪声的分析. 应用科技, 1986; 43(2): 33—39 [14] 武帅兵. 参量阵扬声器在声场控制中的应用研究. 博士学位论文, 北京: 中国科学院声学研究所, 2013: 47—49 [15] 聂新华. 声学参量阵及其测试技术研究. 硕士学位论文, 长沙: 国防科学技术大学, 2009: 3—8 [16] 李颂文. 参量阵及其在水声工程中的应用进展. 声学技术, 2011; 30(1): 9—16 doi: 10.3969/j.issn1000-3630.2011.01.002 [17] 宋洋, 李颂文. 参量接收阵转换效率实验研究. 声学技术, 2013; 32(S5): 233—235 [18] M Červenka, M Bednařík. A versatile computational approach for the numerical modelling of parametric acoustic array. J. Acoust. Soc. Am., 2019; 146(4): 2163—2169 doi: 10.1121/1.5126863 [19] Hamilton M F, Blackstock D T. Nonlinear acoustics. San Diego: Academic Press, 1998 [20] 李太宝. 计算声学. 北京: 科学出版社, 2005: 223—227 [21] 葛俊, 邱小军. 穿孔板声阻抗模型研究. 南京大学学报, 2010; 46(4): 379—386 [22] 赵松龄. 圆柱面上小孔的声阻抗. 声学学报, 1992; 17(1): 1—9 doi: 10.15949/j.cnki.0371-0025.1992.01.001 -
计量
- 文章访问数: 28
- 被引次数: 0