Source localization based on two underwater acoustic gliders in deep water
-
摘要:
为了验证多台滑翔机用于声源位置估计的可行性, 提出了一种基于声学滑翔机的联合水下声源定位方法。首先利用水下滑翔机在东印度洋北部海域获取的声传播数据, 分析了宽带脉冲信号的多途传播特性, 然后提出了利用单水听器基于脉冲波形结构匹配的声源距离估计方法, 在此基础上通过两台水下声学滑翔机联合定位的方式, 实现了水下声源距离和方位的同步估计。结果表明: 在印度洋深海非完全声道条件下, 在100 km范围内, 使用单台滑翔机估计的声源距离整体较为准确, 但仍有估计误差较大点; 联合两台滑翔机进行水下声源定位可进一步提高精度, 对于200 m深度的声源, 距离估计均方根误差为2.5 km, 相对误差小于4%, 方位估计均方根误差为2.4°。
Abstract:A joint underwater acoustic localization method based on acoustic glider is proposed to verify the feasibility of multiple gliders for range and orientation estimation of underwater sources. Using the hydrologic and acoustic data acquired by gliders in the eastern Indian Ocean, the broadband pulse multiple-path propagation characteristic along the distance is analyzed. A range estimation method for sound sources based on pulse waveform matching using a single hydrophone is proposed. For a source with an unknown location, the structure of the pulse waveform can be obtained from the experiment. According to the environmental information acquired, the copy field for the structure of pulse waveform at the different ranges is numerically calculated. After the process of correlating the experimental and simulation signals, the range estimation is realized corresponding to the maximum value of the correlation coefficient. Based on this, range and orientation estimation of underwater sources are achieved through the collaboration of two underwater gliders. The results show that within 100 km, the range estimation can be achieved by the single acoustic glider and there are still some points of large estimation error. The collaboration of two underwater gliders is used to improve the accuracy of range estimation. For the source depth of 200 m, the root mean square error (RMSE) of range and orientation estimation is 2.5 km and 2.4° respectively.
-
Key words:
- Deep water /
- Underwater glider /
- Transmission loss /
- Waveform matching /
- Source localization
-
[1] Jensen F B, Kuperman W A, Porter M B, et al. Computational ocean acoustics. 2nd Ed. New York: Springer, 2011: 1—9 [2] Bucker H P. Use of calculated sound fields and matched-field detection to locate sound sources in shallow water. J. Acoust. Soc. Am., 1976; 59(2): 368—373 doi: 10.1121/1.380872 [3] Westwood E K. Broadband matched-field source localization. J. Acoust. Soc. Am., 1992; 91(5): 2777—2789 doi: 10.1121/1.402958 [4] 李整林, 张仁和, 鄢锦, 等. 大陆斜坡海域宽带声源的匹配场定位. 声学学报, 2003; 28(5): 425—428 doi: 10.3321/j.issn:0371-0025.2003.05.008 [5] Song H C, de Rosny J, Kuperman W A. Improvement in matched field processing using the CLEAN algorithm. J. Acoust. Soc. Am., 2003; 113(3): 1379—1386 doi: 10.1121/1.1531510 [6] 谢亮, 王鲁军, 林旺生. 深海脉冲信号簇到达结构特征及其在水下声源定位中的应用. 声学学报, 2021; 46(2): 171—181 doi: 10.15949/j.cnki.0371-0025.2021.02.002 [7] Wu Z Y, Zhang R H, Qin J X, et al. Source range estimation based on pulse waveform matching in a slope environment. Chin. Phys. Lett., 2017; 34(7): 074301 doi: 10.1088/0256-307X/34/7/074301 [8] McCargar R, Zurk L M. Depth-based signal separation with vertical line arrays in the deep ocean. J. Acoust. Soc. Am., 2013; 133(4): EL320—EL325 doi: 10.1121/1.4795241 [9] Cockrell K L, Schmidt H. Robust passive range estimation using the waveguide invariant. J. Acoust. Soc. Am., 2010; 127(5): 2780—2789 doi: 10.1121/1.3337223 [10] 翁晋宝, 杨燕明. 深海中利用单水听器的影区声源无源测距测深方法. 声学学报, 2018; 43(6): 905—914 doi: 10.15949/j.cnki.0371-0025.2018.06.004 [11] Wang M Y, Li Z L, Wu S L, et al. The characteristic of sound propagation in deep water and underwater source localization in the direct zone. Chinese Journal of Acoustics, 2019; 38(4): 433—444 doi: 10.15949/j.cnki.0217-9776.2019.04.005 [12] 吴俊楠, 周士弘, 张岩. 利用深海海底反射声场特征的水面声源被动测距. 中国科学: 物理学 力学 天文学, 2016; 46(9): 82—88 doi: 10.1360/SSPMA2016-00082 [13] 孙芹东, 兰世泉, 王超, 等. 水下声学滑翔机研究进展及关键技术. 水下无人系统学报, 2020; 28(1): 10—17 doi: 10.11993/j.issn.2096-3920.2020.01.002 [14] 刘璐, 兰世泉, 肖灵, 等. 基于水下滑翔机的海洋环境噪声测量系统. 应用声学, 2017; 36(4): 370—376 doi: 10.11684/j.issn.1000-310X.2017.04.014 [15] Liblik T, Karstensen J, Testor P, et al. Potential for an underwater glider component as part of the Global Ocean Observing System. Methods Oceanogr., 2016; 17: 50—82 doi: 10.1016/j.mio.2016.05.001 [16] Jiang C, Li J, Xu W. The use of underwater gliders as acoustic sensing platforms. Appl. Sci., 2019; 9(22): 4839—4852 doi: 10.3390/app9224839 [17] Küsel E T, Munoz T, Siderius M, et al. Marine mammal tracks from two-hydrophone acoustic recordings made with a glider. Ocean Sci., 2017; 13(2): 273—288 doi: 10.5194/os-13-273-2017 [18] 吴禹沈, 李整林, 秦继兴, 等. 水下声学滑翔机用于东印度洋声传播特性分析及声源估计. 声学学报, 2021; 46(6): 1102—1113 doi: 10.15949/j.cnki.0371-0025.2021.06.029 [19] 王超, 孙芹东, 张林, 等. 水下声学滑翔机海上目标探测试验与性能评估. 信号处理, 2020; 36(12): 2043—2051 doi: 10.16798/j.issn.1003-0530.2020.12.010 [20] Liu Z H, Xu J P, Yu J C. Real-time quality control of data from Sea-Wing underwater glider installed with Glider Payload CTD sensor. Acta Oceanolog. Sin., 2020; 39(3): 130—140 doi: 10.1007/s13131-020-1564-6 [21] 李晓婷, 郑沛楠, 王建丰, 等. 常用海洋数据资料简介. 海洋预报, 2010; 27(5): 81—89 [22] Collins M D. A split-step Padé solution for the parabolic equation method. J Acoust. Soc. Am., 1993; 93(4): 1736—1742 doi: 10.1121/1.406739 [23] Li Z, Li F. Geoacoustic inversion for sediments in the South China Sea based on a hybrid inversion scheme. Chin. J. Oceanol. Limnol., 2010; 28(5): 990—995 doi: 10.1007/s00343-010-9117-z [24] 张鹏, 李整林, 吴立新, 等. 深海海底反射会聚区声传播特性. 物理学报, 2019; 68(1): 174—185 doi: 10.7498/aps.68.20181761 -
计量
- 文章访问数: 72
- 被引次数: 0