Rapid calibration method for rank defect submarine geodetic station network
-
摘要:
基于信标互测距信息与绝对坐标信息的融合, 提出一种海洋大地控制网快速标校方法。相较于现有方法, 快速标校方法降低了自由网平差对起算条件的需求, 减少了50%以上的绝对标定点数目, 标校效率与绝对坐标精度显著提升。在大范围布设时, 优势明显。此外, 通过对阵型与绝对校准点数目的分析, 提出了几种典型阵型在理想条件下的布设方案。浅水试验结果表明, 在保证基准网标校精度高于0.2 m的条件下, 标校效率提升了50%。
Abstract:A rapid calibration method for marine geodetic control networks based on the combination of beacon mutual ranging information and absolute coordinate information is proposed. Compared with existing methods, the rapid calibration method reduces the initial condition restriction of free net adjustment; the number of absolute calibration points is reduced by more than 50%, and the calibration efficiency and absolute coordinate precision are significantly improved. In addition, several typical formations under ideal conditions are proposed by analyzing the formations and absolute calibration points. The shallow water test results show that the calibration efficiency is improved by 50% when the calibration precision of the reference network is greater than 0.2 m and the calibration precision of the reference network is greater than 0.2 m.
-
表 1 不同阵型下各布设方案的精度对比结果
控制点数 阵型 海底海面快速校准 传统相对测阵平差 内符合精度 (m) 外符合精度 (m) 内符合精度 (m) 外符合精度 (m) 1 3 0.00 0.54 0.00 6.12 4 0.01 0.57 0.00 5.91 5 0.04 0.56 0.04 5.68 6 0.04 0.55 0.04 5.35 2 3 0.00 0.12 0.00 4.51 4 0.01 0.26 0.00 5.09 5 0.02 0.29 0.048 5.02 6 0.03 0.34 0.04 4.91 3 3 0.00 0.00 0.00 0.16 4 0.00 0.00 0.00 3.58 5 0.01 0.25 0.04 4.15 6 0.02 0.33 0.04 4.23 表 2 基线长度与定位误差的关系
网型 方案 基线长度 (m) $ \delta $(m) 四元阵 $ {{\rm{L}}1} $ 1414.335 0.48 $ {{\rm{L}}2} $ 2000.400 0.37 五元阵 $ {{\rm{L}}1} $ 1175.741 0.49 $ {{\rm{L}}2} $ 1902.534 0.34 六元阵 $ {{\rm{L}}1} $ 1000.200 0.46 $ {{\rm{L}}2} $ 1732.513 0.34 $ {{\rm{L}}3} $ 2000.900 0.33 表 3 各信标标定结果
信标编号 X (m) Y (m) Z (m) C2 初值 4841929.578 315676.980 62.828 修正后 4841955.114 315690.413 60.955 C4 初值 4841854.225 315692.535 60.882 修正后 4841835.066 315697.764 59.964 C5 初值 4841862.234 315789.482 61.837 修正后 4841864.983 315792.608 59.834 C6 初值 4841958.240 315783.367 61.581 修正后 4841969.620 315787.096 60.562 表 4 各方案标校精度对比
方案 基线长度 (m) N (RMSE) (m) E (RMSE) (m) U (RMSE) (m) 外符合精度($ \delta $) (m) 内符合精度($ \sigma _0^{} $) (m) L1 120.277 0.024 0.111 3.253 0.202 0.081 L2 99.451 0.051 0.087 3.822 0.127 0.570 L3 104.785 0.172 0.280 6.058 0.632 0.031 L4 97.766 0.151 0.195 4.163 0.493 0.030 L5 136.267 0.074 0.031 3.904 0.134 0.112 L6 161.510 0.093 0.049 3.001 0.209 0.017 -
[1] Spiess F N, Chadwell C D, Hildebrand J A, et al. Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies. Phys. Earth Planet. Inter., 1998; 108(2): 101—112 doi: 10.1016/S0031-9201(98)00089-2 [2] Favali P, Beranzoli L. Seafloor observatory science: A review. Ann. Geophys., 2006; 49(2-3): 515—567 doi: 10.4401/ag-3125 [3] Matsumoto Y, Ishikawa T, Fujita M. Weak interplate coupling beneath the subduction zone off Fukushima, NE Japan, inferred from GPS/acoustic seafloor geodetic observation. Earth Planets Space, 2008; 60(6): 9—12 doi: 10.1186/BF03353114 [4] Mochizuki M, Sato M, Yoshida Z, et al. Seafloor geodetic observations around Japan. Proceedings of the 2002 Interntional Symposium on Underwater Technology, IEEE, Tokyo, Japan, 2002: 239—243 [5] Fujita M, Ishikawa T, Mochizuki M, et al. GPS/Acoustic seafloor geodetic observation: method of data analysis and its application. Earth Planets Space, 2006; 58(3): 265—275 doi: 10.1186/BF03351923 [6] 吴永亭. LBL精密定位理论方法研究及软件系统研制. 博士学位论文, 武汉: 武汉大学, 2013 [7] Vickery K. Acoustic positioning systems: New concepts − the future. Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles, IEEE, Cambridge, MA, USA, 1998: 103—110 [8] Larsen M B. Synthetic long baseline navigation of underwater vehicles. OCEANS 2000 MTS/IEEE Conference and Exhibition, IEEE, Providence, RI, USA, 2000: 2043—2050 [9] Sato M, Fujita M, Matsumoto Y, et al. Improvement of GPS/acoustic seafloor positioning precision through controlling the ship's track line. J. Geodesy, 2013; 87(9): 825—842 doi: 10.1007/s00190-013-0649-9 [10] 韩云峰, 郑翠娥, 孙大军. 长基线定位系统高精度阵型标定方法. 声学学报, 2016; 41(4): 456—464 doi: 10.15949/j.cnki.0371-0025.2016.04.002 [11] 赵建虎, 邹亚靖, 吴永亭, 等. 深度约束的海底控制网点坐标确定方法. 哈尔滨工业大学学报, 2016; 48(10): 137—141 doi: 10.11918/j.issn.0367-6234.2016.10.020 [12] 赵建虎, 陈鑫华, 吴永亭, 等. 顾及波浪影响和深度约束的水下控制网点绝对坐标的精确确定. 测绘学报, 2018; 47(3): 413—421 doi: 10.11947/j.AGCS.2018.20170246 [13] Han G, Qian A, Zhang C, et al. Localization algorithms in large-scale underwater acoustic sensor networks: A quantitative comparison. Int. J. Distrib. Sens. Netw., 2014; 2014(1): 1—11 doi: 10.1155/2014/379382 [14] 刘宁, 徐天河. 基于自适应分层的声线跟踪改进算法. 中国卫星导航年会, 中国卫星导航学术年会组委会, 北京, 2019: 74—78 [15] Osada Y, Kido M, Fujimoto H. A long-term seafloor experiment using an acoustic ranging system: Precise horizontal distance measurements for detection of seafloor crustal deformation. Ocean Eng., 2012; 51: 28—33 doi: 10.1016/j.oceaneng.2012.05.006 [16] Zhao J, Zou Y, Zhang H, et al. A new method for absolute datum transfer in seafloor control network measurement. J. Mar. Sci. Technol., 2016; 21: 226 doi: 10.1007/s00773-015-0344-z [17] 赵建虎, 李娟娟, 李萌. 海洋测量的进展及发展趋势. 测绘信息与工程, 2009; 34(4): 25—27 [18] 杨元喜, 刘焱雄, 孙大军, 等. 海底大地基准网建设及其关键技术. 中国科学: 地球科学, 2020; 50(7): 936—945 doi: 10.1360/SSTe-2019-0242 [19] 曾安敏, 杨元喜, 明锋, 等. 海底大地基准点圆走航模式定位模型及分析. 测绘学报, 2021; 50(7): 939—952 doi: 10.11947/j.AGCS.2021.20200529 [20] BalluV, Bouin M N, Calmant S, et al. Absolute seafloor vertical positioning using combined pressure gauge and kinematic GPS data. J. Geod., 2010; 84(1): 65—77 doi: 10.1007/s00190-009-0345-y [21] Sharp I, Yu K, Hedley M. On the GDOP and accuracy for indoor positioning. IEEE Trans. Aerosp. Electron. Syst., 2012; 48(3): 2032—2051 doi: 10.1109/TAES.2012.6237577 [22] Osada Y, Kido M, Fujimoto H, et al. Development of a seafloor acoustic ranging system toward the seafloor cable network system. Ocean Eng., 2008; 35(14-15): 1401—1405 doi: 10.1016/j.oceaneng.2008.07.007 [23] 韩云峰. 大规模水下传感器网络节点精确定位技术研究. 博士学位论文, 哈尔滨: 哈尔滨工程大学, 2016 -
计量
- 文章访问数: 32
- 被引次数: 0