EI / SCOPUS / CSCD 收录

中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑超声探测器脉冲响应和方向性的光声图像重建方法

孙慧峰 孙正 侯英飒 孙美晨

孙慧峰, 孙正, 侯英飒, 孙美晨. 考虑超声探测器脉冲响应和方向性的光声图像重建方法[J]. 声学学报, 2023, 48(3): 568-577. doi: 10.15949/j.cnki.0371-0025.2023.03.009
引用本文: 孙慧峰, 孙正, 侯英飒, 孙美晨. 考虑超声探测器脉冲响应和方向性的光声图像重建方法[J]. 声学学报, 2023, 48(3): 568-577. doi: 10.15949/j.cnki.0371-0025.2023.03.009
SUN Huifeng, SUN Zheng, HOU Yingsa, SUN Meichen. Image reconstruction method for photoacoustic imaging accounting for impulse responses and directivity of ultrasonic detector[J]. ACTA ACUSTICA, 2023, 48(3): 568-577. doi: 10.15949/j.cnki.0371-0025.2023.03.009
Citation: SUN Huifeng, SUN Zheng, HOU Yingsa, SUN Meichen. Image reconstruction method for photoacoustic imaging accounting for impulse responses and directivity of ultrasonic detector[J]. ACTA ACUSTICA, 2023, 48(3): 568-577. doi: 10.15949/j.cnki.0371-0025.2023.03.009

考虑超声探测器脉冲响应和方向性的光声图像重建方法

doi: 10.15949/j.cnki.0371-0025.2023.03.009
基金项目: 国家自然科学基金项目(62071181)资助
详细信息
    作者简介:

    孙慧峰 sunhuifeng_ncepu@163.com

    通讯作者:

    孙正, sunzheng@ncepu.edu.cn

  • 中图分类号: 43.20

Image reconstruction method for photoacoustic imaging accounting for impulse responses and directivity of ultrasonic detector

  • 摘要:

    在光声成像中, 假设超声探测器为具有全向响应的理想点探测器通常会导致图像分辨率下降。为了解决探测器效应引起的图像质量下降问题, 提出一种考虑探测器特性的光声图像重建方法, 建立包含探测器方向性和脉冲响应的前向成像模型, 通过迭代求解前向模型的逆问题, 实现光吸收能量分布图的高质量重建。仿真和仿体实验结果表明, 与未考虑或未充分考虑探测器特性的传统重建方法和其他重建增强方法相比, 所提方法可以显著提高图像分辨率和对比度, 改善图像质量。

     

  • 图 1  仿真模型的几何结构 (a) 点阵模型; (b) 冠脉血管横截面模型

    图 2  IVPA成像原理示意图

    图 3  成像平面某点处的探测器SIR和EIR时间曲线

    图 4  仿真模型成像结果 (a) 图像重建结果; (b) 图像评价指标(左: NMSAD, SSIM, 右: PSNR)

    图 5  仿体成像结果 (a) 建模示意图和实物照片; (b) 成像系统示意图; (c) 图像重建结果; (d) CR和CNR统计结果

    图 6  采用不同迭代初始值时的重建图像以及迭代次数和时间 (a) 重建图像; (b) 迭代次数和时间

    图 7  迭代步长和探测器方向性对重建图像质量的影响以及与级数展开法的对比 (a) 重建图像; (b) 评价指标

    表  1  仿真模型的组织特性参数

    组织名称平均折射率吸收系数 (cm‒1)散射系数 (cm‒1)各向异性因子平均声速 (m/s)平均密度 (kg/L)
    点阵1.400.994500.8016351.30
    血管壁外膜1.390.70516001.02
    中膜0.4015801.07
    内膜0.2015601.07
    钙化斑块1.420.6055016500.94
    脂质斑块0.9050015000.96
    巨噬细胞0.9645016200.97
    坏死核0.8045016200.97
    混合斑块0.6055016500.94
    管腔1.321.006000.9915401.13
    下载: 导出CSV
  • [1] Eun-Yeong P, Lee H, Han S, et al. Photoacoustic imaging systems based on clinical ultrasound platform. Exp. Biol. Med., 2022; 247(7): 551—560 doi: 10.1177/15353702211073684
    [2] 苑园, 孙正, 韩朵朵. 血管内光声图像的建模与仿真. 声学学报, 2016; 41(6): 863—869 doi: 10.15949/j.cnki.0371-0025.2016.06.011
    [3] Sun Z, Meng Q, Wang X. Quantitative endoscopic photoacoustic tomography using convolutional neural network. Appl. Opt., 2022; 61(10): 2574—2581 doi: 10.1364/AO.441250
    [4] Sun Z, Sun L. Simultaneous reconstruction of optical absorption property and speed of sound in intravascular photoacoustic tomography. Inverse Probl. Sci. Eng., 2021; 29(12): 1764—1788 doi: 10.1080/17415977.2021.1879805
    [5] Xu M, Wang L V. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E, 2005; 71: 016706 doi: 10.1103/PhysRevE.71.016706
    [6] Sun Z, Han D, Yuan Y. 2-D image reconstruction of photoacoustic endoscopic imaging based on time-reversal. Comput. Biol. Med., 2016; 76: 60—68 doi: 10.1016/j.compbiomed.2016.06.028
    [7] Spadin F, Jaeger M, Nuster R, et al. Quantitative comparison of frequency-domain and delay-and-sum optoacoustic image reconstruction including the effect of coherence factor weighting. Photoacoustics, 2020; 17: 100149 doi: 10.1016/j.pacs.2019.100149
    [8] Tian C, Pei M, Shen K, et al. Impact of system factors on the performance of photoacoustic tomography scanners. Phys. Rev. Appl., 2020; 13: 014001 doi: 10.1103/PhysRevApplied.13.014001
    [9] Li M, Wang L V. A study of reconstruction in photoacoustic tomography with a focused transducer. International Conference on Photons Plus Ultrasound: Imaging and Sensing 2007, SPIE, San Francisco, CA, United States, 2007: 64371E
    [10] Han J, Gui Z, Wen T, et al. Direct and real-time sub-wavelength resolution photoacoustic imaging method based on acoustic lens with negative refractive index. J Meas. Sci. Instrum., 2016; 7(4): 388—397 doi: 10.3969/j.issn.1674-8042.2016.04.014
    [11] Li M, Tseng Y, Cheng C. Model-based correction of finite aperture effect in photoacoustic tomography. Opt. Express, 2010; 18(25): 26285—26292 doi: 10.1364/OE.18.026285
    [12] Chiu C, Chuo Y, Li M. Image reconstruction of photoacoustic tomography based on finite-aperture-effect corrected compressed sensing algorithm. International Conference on Photons Plus Ultrasound: Imaging and Sensing 2014, SPIE, San Francisco, CA, United States, 2014: 89433X
    [13] Lu T, Wang Y, Gao F, et al. Spatial-impulse-response-dependent back-projection using the non-stationary convolution in optoacoustic mesoscopy. International Conference on Photons Plus Ultrasound: Imaging and Sensing 2018, SPIE, San Francisco, CA, United States, 2018: 104943R
    [14] Wang B, Su T, Pang W, et al. Back-projection algorithm in generalized form for circular-scanning-based photoacoustic tomography with improved tangential resolution. Quant. Imag. Med. Surg., 2019; 9: 491—502 doi: 10.21037/qims.2019.03.12
    [15] Wang B, Ye T, Wang G, et al. Approximate back-projection method for improving lateral resolution in circular-scanning-based photoacoustic tomography. Med. Phys., 2021; 48(6): 3011—3021 doi: 10.1002/mp.14880
    [16] Luo X, Xiao J, Wang C, et al. Fast correction of “finite aperture effect” in photoacoustic tomography based on spatial impulse response. Photonics, 2021; 8: 356 doi: 10.3390/photonics8090356
    [17] Cao M, Feng T, Yuan J, et al. Spread spectrum photoacoustic tomography with image optimization. IEEE Trans. Biomed. Circ. S., 2017; 11: 411—419 doi: 10.1109/TBCAS.2016.2593470
    [18] Burgholzer P, Bauer-Marschallinger J, Grun H. Weight factors for limited angle photoacoustic tomography. Phys. Med. Biol., 2009; 54: 3303—3314 doi: 10.1088/0031-9155/54/11/002
    [19] Liu X, Peng D, Ma X, et al. Limited view photoacoustic imaging based on an iterative adaptive weighted filtered backprojection approach. Appl. Opt., 2013; 52: 3477—3483 doi: 10.1364/AO.52.003477
    [20] Qin T, Zheng Z, Zhang R, et al. l0 gradient minimization for limited-view photoacoustic tomography. Phys. Med. Biol., 2019; 64: 195004 doi: 10.1088/1361-6560/ab3704
    [21] Sun Z, Yan X. Image reconstruction based on compressed sensing for sparse-data endoscopic photoacoustic tomography. Comput. Biol. Med., 2020; 116: 103587 doi: 10.1016/j.compbiomed.2019.103587
    [22] Lu T, Chen T, Gao F, et al. LV-GAN: A deep learning approach for limited-view optoacoustic imaging based on hybrid datasets. J. Biophotonics, 2020; 14: e202000325 doi: 10.1002/jbio.202000325
    [23] Tong T, Huang W, Wang K, et al. Domain transform network for photoacoustic tomography from limitedview and sparsely sampled data. Photoacoustics, 2020; 19: 100190 doi: 10.1016/j.pacs.2020.100190
    [24] Sun Z, Wang X, Yan X. An iterative gradient convolutional neural network and its application in endoscopic photoacoustic image formation from incomplete acoustic measurement. Neural Comput. Appl., 2021; 33(14): 8555—8574 doi: 10.1007/s00521-020-05607-x
    [25] Gutta S, Kadimesetty V S, Kalva S K, et al. Deep neural network-based bandwidth enhancement of photoacoustic data. J. Biomed. Opt., 2017; 22: 116001 doi: 10.1117/1.JBO.22.11.116001
    [26] Vu T, Li M, Humayun H, et al. A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer. Exp. Biol. Med., 2020; 245(7): 597—605 doi: 10.1177/1535370220914285
    [27] Joseph F K, Arora A, Kancharla P, et al. Generative adversarial network-based photoacoustic image reconstruction from bandlimited and limited-view data. International Conference on Photons Plus Ultrasound: Imaging and Sensing 2021, SPIE, San Francisco, CA, United States, 2021: 1164235
    [28] Wang K, Ermilov S A, Su R, et al. An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography. IEEE Trans. Med. Imag., 2011; 30(2): 203—214 doi: 10.1109/TMI.2010.2072514
    [29] Sheng Q, Wang K, Matthews T P, et al. A constrained variable projection reconstruction method for photoacoustic computed tomography without accurate knowledge of transducer responses. IEEE Trans. Med. Imag., 2015; 34(12): 2443—2457 doi: 10.1109/TMI.2015.2437356
    [30] Drozdov G, Levi A, Rosenthal A, et al. The impulse response of negatively focused spherical ultrasound detectors and its effect on tomographic optoacoustic reconstruction. IEEE Trans. Med. Imag., 2019; 38(10): 2326—2337 doi: 10.1109/TMI.2019.2897588
    [31] Lu Tong, Wang Y, Li J, et al. Full-frequency correction of spatial impulse response in back-projection scheme using space-variant filtering for optoacoustic mesoscopy. Photoacoustics, 2020; 19: 100193 doi: 10.1016/j.pacs.2020.100193
    [32] Cox B T, Treeby B E. Effect of sensor directionality on photoacoustic imaging: a study using the k-wave toolbox. International Conference on Photons Plus Ultrasound: Imaging and Sensing 2010, SPIE, San Francisco, CA, United States, 2010: 75640I
    [33] Zangerl G, Moon S, Haltmeier M, et al. Photoacoustic tomography with direction dependent data: an exact series reconstruction approach. Inverse Probl., 2019; 35(11): 1—16 doi: 10.1088/1361-6420/ab2a30
    [34] Wang L V, Jacques S L, Zheng L. MCML Monte Carlo modeling of light transport in multilayered tissues. Comput. Meth. Prog. Bio., 1995; 47(2): 131—146 doi: 10.1016/0169-2607(95)01640-F
    [35] Mohammadi L, Behnam H, Tavakkoli J, et al. Skull’s photoacoustic attenuation and dispersion modeling with deterministic ray-tracing: towards real-time aberration correction. Sensors, 2019; 19(2): 345 doi: 10.3390/s19020345
    [36] Rivière P J L, Zhang J, Anastasio M A. Image reconstruction in optoacoustic tomography for dispersive acoustic media. Opt. Lett., 2006; 31(6): 781—783 doi: 10.1364/OL.31.000781
    [37] Piwakowski B, Sbai K. A new approach to calculate the field radiated from arbitarily structured transducer arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1999; 46(2): 422—440 doi: 10.1109/58.753032
  • 加载中
计量
  • 文章访问数:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-08-22
  • 刊出日期:  2023-05-11

目录

    /

    返回文章
    返回