Image reconstruction method for photoacoustic imaging accounting for impulse responses and directivity of ultrasonic detector
-
摘要:
在光声成像中, 假设超声探测器为具有全向响应的理想点探测器通常会导致图像分辨率下降。为了解决探测器效应引起的图像质量下降问题, 提出一种考虑探测器特性的光声图像重建方法, 建立包含探测器方向性和脉冲响应的前向成像模型, 通过迭代求解前向模型的逆问题, 实现光吸收能量分布图的高质量重建。仿真和仿体实验结果表明, 与未考虑或未充分考虑探测器特性的传统重建方法和其他重建增强方法相比, 所提方法可以显著提高图像分辨率和对比度, 改善图像质量。
Abstract:In photoacoustic imaging, image reconstruction suffers from the assumption of an ideal point detector with omnidirectional response, resulting in a degradation in the resolution of the reconstructed image. An image reconstruction method that takes into account the impulse responses and directionality of the ultrasonic detector is proposed in this paper. A high-quality image representing the optical absorption distribution is reconstructed by iteratively solving the inverse problem of the forward model incorporating the detector directivity and impulse response. Results of simulation and phantom experiments show that the proposed method can significantly improve image resolution and contrast compared with traditional reconstruction methods and other reconstruction enhancement methods that do not or not fully account for detector characteristics.
-
表 1 仿真模型的组织特性参数
组织名称 平均折射率 吸收系数 (cm‒1) 散射系数 (cm‒1) 各向异性因子 平均声速 (m/s) 平均密度 (kg/L) 点阵 1.40 0.99 450 0.80 1635 1.30 血管壁 外膜 1.39 0.70 5 1600 1.02 中膜 0.40 1580 1.07 内膜 0.20 1560 1.07 钙化斑块 1.42 0.60 550 1650 0.94 脂质斑块 0.90 500 1500 0.96 巨噬细胞 0.96 450 1620 0.97 坏死核 0.80 450 1620 0.97 混合斑块 0.60 550 1650 0.94 管腔 1.32 1.00 600 0.99 1540 1.13 -
[1] Eun-Yeong P, Lee H, Han S, et al. Photoacoustic imaging systems based on clinical ultrasound platform. Exp. Biol. Med., 2022; 247(7): 551—560 doi: 10.1177/15353702211073684 [2] 苑园, 孙正, 韩朵朵. 血管内光声图像的建模与仿真. 声学学报, 2016; 41(6): 863—869 doi: 10.15949/j.cnki.0371-0025.2016.06.011 [3] Sun Z, Meng Q, Wang X. Quantitative endoscopic photoacoustic tomography using convolutional neural network. Appl. Opt., 2022; 61(10): 2574—2581 doi: 10.1364/AO.441250 [4] Sun Z, Sun L. Simultaneous reconstruction of optical absorption property and speed of sound in intravascular photoacoustic tomography. Inverse Probl. Sci. Eng., 2021; 29(12): 1764—1788 doi: 10.1080/17415977.2021.1879805 [5] Xu M, Wang L V. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E, 2005; 71: 016706 doi: 10.1103/PhysRevE.71.016706 [6] Sun Z, Han D, Yuan Y. 2-D image reconstruction of photoacoustic endoscopic imaging based on time-reversal. Comput. Biol. Med., 2016; 76: 60—68 doi: 10.1016/j.compbiomed.2016.06.028 [7] Spadin F, Jaeger M, Nuster R, et al. Quantitative comparison of frequency-domain and delay-and-sum optoacoustic image reconstruction including the effect of coherence factor weighting. Photoacoustics, 2020; 17: 100149 doi: 10.1016/j.pacs.2019.100149 [8] Tian C, Pei M, Shen K, et al. Impact of system factors on the performance of photoacoustic tomography scanners. Phys. Rev. Appl., 2020; 13: 014001 doi: 10.1103/PhysRevApplied.13.014001 [9] Li M, Wang L V. A study of reconstruction in photoacoustic tomography with a focused transducer. International Conference on Photons Plus Ultrasound: Imaging and Sensing 2007, SPIE, San Francisco, CA, United States, 2007: 64371E [10] Han J, Gui Z, Wen T, et al. Direct and real-time sub-wavelength resolution photoacoustic imaging method based on acoustic lens with negative refractive index. J Meas. Sci. Instrum., 2016; 7(4): 388—397 doi: 10.3969/j.issn.1674-8042.2016.04.014 [11] Li M, Tseng Y, Cheng C. Model-based correction of finite aperture effect in photoacoustic tomography. Opt. Express, 2010; 18(25): 26285—26292 doi: 10.1364/OE.18.026285 [12] Chiu C, Chuo Y, Li M. Image reconstruction of photoacoustic tomography based on finite-aperture-effect corrected compressed sensing algorithm. International Conference on Photons Plus Ultrasound: Imaging and Sensing 2014, SPIE, San Francisco, CA, United States, 2014: 89433X [13] Lu T, Wang Y, Gao F, et al. Spatial-impulse-response-dependent back-projection using the non-stationary convolution in optoacoustic mesoscopy. International Conference on Photons Plus Ultrasound: Imaging and Sensing 2018, SPIE, San Francisco, CA, United States, 2018: 104943R [14] Wang B, Su T, Pang W, et al. Back-projection algorithm in generalized form for circular-scanning-based photoacoustic tomography with improved tangential resolution. Quant. Imag. Med. Surg., 2019; 9: 491—502 doi: 10.21037/qims.2019.03.12 [15] Wang B, Ye T, Wang G, et al. Approximate back-projection method for improving lateral resolution in circular-scanning-based photoacoustic tomography. Med. Phys., 2021; 48(6): 3011—3021 doi: 10.1002/mp.14880 [16] Luo X, Xiao J, Wang C, et al. Fast correction of “finite aperture effect” in photoacoustic tomography based on spatial impulse response. Photonics, 2021; 8: 356 doi: 10.3390/photonics8090356 [17] Cao M, Feng T, Yuan J, et al. Spread spectrum photoacoustic tomography with image optimization. IEEE Trans. Biomed. Circ. S., 2017; 11: 411—419 doi: 10.1109/TBCAS.2016.2593470 [18] Burgholzer P, Bauer-Marschallinger J, Grun H. Weight factors for limited angle photoacoustic tomography. Phys. Med. Biol., 2009; 54: 3303—3314 doi: 10.1088/0031-9155/54/11/002 [19] Liu X, Peng D, Ma X, et al. Limited view photoacoustic imaging based on an iterative adaptive weighted filtered backprojection approach. Appl. Opt., 2013; 52: 3477—3483 doi: 10.1364/AO.52.003477 [20] Qin T, Zheng Z, Zhang R, et al. l0 gradient minimization for limited-view photoacoustic tomography. Phys. Med. Biol., 2019; 64: 195004 doi: 10.1088/1361-6560/ab3704 [21] Sun Z, Yan X. Image reconstruction based on compressed sensing for sparse-data endoscopic photoacoustic tomography. Comput. Biol. Med., 2020; 116: 103587 doi: 10.1016/j.compbiomed.2019.103587 [22] Lu T, Chen T, Gao F, et al. LV-GAN: A deep learning approach for limited-view optoacoustic imaging based on hybrid datasets. J. Biophotonics, 2020; 14: e202000325 doi: 10.1002/jbio.202000325 [23] Tong T, Huang W, Wang K, et al. Domain transform network for photoacoustic tomography from limitedview and sparsely sampled data. Photoacoustics, 2020; 19: 100190 doi: 10.1016/j.pacs.2020.100190 [24] Sun Z, Wang X, Yan X. An iterative gradient convolutional neural network and its application in endoscopic photoacoustic image formation from incomplete acoustic measurement. Neural Comput. Appl., 2021; 33(14): 8555—8574 doi: 10.1007/s00521-020-05607-x [25] Gutta S, Kadimesetty V S, Kalva S K, et al. Deep neural network-based bandwidth enhancement of photoacoustic data. J. Biomed. Opt., 2017; 22: 116001 doi: 10.1117/1.JBO.22.11.116001 [26] Vu T, Li M, Humayun H, et al. A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer. Exp. Biol. Med., 2020; 245(7): 597—605 doi: 10.1177/1535370220914285 [27] Joseph F K, Arora A, Kancharla P, et al. Generative adversarial network-based photoacoustic image reconstruction from bandlimited and limited-view data. International Conference on Photons Plus Ultrasound: Imaging and Sensing 2021, SPIE, San Francisco, CA, United States, 2021: 1164235 [28] Wang K, Ermilov S A, Su R, et al. An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography. IEEE Trans. Med. Imag., 2011; 30(2): 203—214 doi: 10.1109/TMI.2010.2072514 [29] Sheng Q, Wang K, Matthews T P, et al. A constrained variable projection reconstruction method for photoacoustic computed tomography without accurate knowledge of transducer responses. IEEE Trans. Med. Imag., 2015; 34(12): 2443—2457 doi: 10.1109/TMI.2015.2437356 [30] Drozdov G, Levi A, Rosenthal A, et al. The impulse response of negatively focused spherical ultrasound detectors and its effect on tomographic optoacoustic reconstruction. IEEE Trans. Med. Imag., 2019; 38(10): 2326—2337 doi: 10.1109/TMI.2019.2897588 [31] Lu Tong, Wang Y, Li J, et al. Full-frequency correction of spatial impulse response in back-projection scheme using space-variant filtering for optoacoustic mesoscopy. Photoacoustics, 2020; 19: 100193 doi: 10.1016/j.pacs.2020.100193 [32] Cox B T, Treeby B E. Effect of sensor directionality on photoacoustic imaging: a study using the k-wave toolbox. International Conference on Photons Plus Ultrasound: Imaging and Sensing 2010, SPIE, San Francisco, CA, United States, 2010: 75640I [33] Zangerl G, Moon S, Haltmeier M, et al. Photoacoustic tomography with direction dependent data: an exact series reconstruction approach. Inverse Probl., 2019; 35(11): 1—16 doi: 10.1088/1361-6420/ab2a30 [34] Wang L V, Jacques S L, Zheng L. MCML Monte Carlo modeling of light transport in multilayered tissues. Comput. Meth. Prog. Bio., 1995; 47(2): 131—146 doi: 10.1016/0169-2607(95)01640-F [35] Mohammadi L, Behnam H, Tavakkoli J, et al. Skull’s photoacoustic attenuation and dispersion modeling with deterministic ray-tracing: towards real-time aberration correction. Sensors, 2019; 19(2): 345 doi: 10.3390/s19020345 [36] Rivière P J L, Zhang J, Anastasio M A. Image reconstruction in optoacoustic tomography for dispersive acoustic media. Opt. Lett., 2006; 31(6): 781—783 doi: 10.1364/OL.31.000781 [37] Piwakowski B, Sbai K. A new approach to calculate the field radiated from arbitarily structured transducer arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1999; 46(2): 422—440 doi: 10.1109/58.753032 -
计量
- 文章访问数: 46
- 被引次数: 0