EI / SCOPUS / CSCD 收录

中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏流板距离对亚声速射流冲击宽频噪声特性的影响

覃晨 岳廷瑞 冯和英 吴松岭 曾波

覃晨, 岳廷瑞, 冯和英, 吴松岭, 曾波. 偏流板距离对亚声速射流冲击宽频噪声特性的影响[J]. 声学学报, 2023, 48(3): 549-558. doi: 10.15949/j.cnki.0371-0025.2023.03.011
引用本文: 覃晨, 岳廷瑞, 冯和英, 吴松岭, 曾波. 偏流板距离对亚声速射流冲击宽频噪声特性的影响[J]. 声学学报, 2023, 48(3): 549-558. doi: 10.15949/j.cnki.0371-0025.2023.03.011
QIN Chen, YUE Tingrui, FENG Heying, WU Songling, ZENG Bo. Broadband noise performance of subsonic jet with different impingement distances to a deflector[J]. ACTA ACUSTICA, 2023, 48(3): 549-558. doi: 10.15949/j.cnki.0371-0025.2023.03.011
Citation: QIN Chen, YUE Tingrui, FENG Heying, WU Songling, ZENG Bo. Broadband noise performance of subsonic jet with different impingement distances to a deflector[J]. ACTA ACUSTICA, 2023, 48(3): 549-558. doi: 10.15949/j.cnki.0371-0025.2023.03.011

偏流板距离对亚声速射流冲击宽频噪声特性的影响

doi: 10.15949/j.cnki.0371-0025.2023.03.011
详细信息
    通讯作者:

    岳廷瑞, yuetingrui@cardc.cn

  • 中图分类号: 43.28

Broadband noise performance of subsonic jet with different impingement distances to a deflector

  • 摘要:

    通过全消声室实验研究了不同冲击距离(L)下亚声速射流宽频噪声特性。利用远场传声器获得L = 30D~2D (D为喷口直径)的噪声数据, 并详细分析了频谱特性。试验结果表明, 减小冲击距离: (1) 上游所有频段的噪声都明显上升, 极角α = 120°总声压级(OASPL)在L < 10D时增加了10~17 dB; (2) 下游α = 30°的噪声能量向低频转移, 且频谱在L < 10D时变化不明显; (3) 偏流板产生噪声的中、高频段对边线影响较小, α = 90°的频谱迅速衰减, 在L < 10D时形成陡峭的峰值。研究证实在噪声最强的方向(α = 120°), 随冲击距离的减小偏流板贡献的噪声功率占比呈线性增加。冲击距离小于势流核时, 偏流板贡献大部分噪声能量, L = 7D~5D时占比超过80%。另外射流冲击产生的噪声指向性明显, 冲击噪声和后缘分离噪声在不同方向取得主导地位, 相应频谱分别在上游和下游呈现高频主导和低频占优的特性。

     

  • 图 1  全消声室和喷流装置布局示意图

    图 2  射流冲击方案示意图

    图 3  冲击斜板和喷口相对位置 (a) 实物图; (b) 示意图

    图 4  射流冲击偏流板主要流动结构和声源

    图 5  远场噪声测量方案 (a) 实物图; (b) 示意图

    图 6  PIV拍摄 (a) 拍摄现场; (b) 同步器; (c) 相机; (d) 激光器; (e) 激光器电源

    图 7  自由射流流动显示

    图 8  自由射流势流核范围

    图 9  射流冲击平均流动(L = 4D)

    图 10  自由射流和射流冲击瞬时流动对比(L = 7D)

    图 11  射流冲击流动示意图

    图 12  不同冲击距离总声压级 (a) 10DL ≤ 30D; (b) 2DL ≤ 8D

    图 13  上游窄带声压级频谱(α = 120°) (a) 10DL ≤ 30D; (b) 2DL ≤ 8D

    图 14  上游噪声变化(α = 120°)

    图 15  偏流板噪声声功率百分比(α = 120°)

    图 16  边线窄带声压级频谱(α = 90°) (a) 10DL ≤ 30D; (b) 4DL ≤ 8D; (c) 2DL ≤ 4D

    图 17  边线噪声变化 (α = 90°)

    图 18  下游窄带声压级频谱(α = 30°) (a) 10DL ≤ 30D; (b) 4DL ≤ 8D; (c) 2DL ≤ 4D

    图 19  射流轴线侧面远场噪声辐射(俯视图)

    表  1  传声器极角

    传声器序号极角 α (°)备注
    130下游典型极角
    240
    350
    460
    570
    680
    785
    890边线典型极角
    995
    10100
    11110
    12120上游典型极角
    下载: 导出CSV
  • [1] Ginzburg I P, Semiletenko B G, Terpigor’ev V S, et al. Some singularities of supersonic underexpanded jet interaction with a plane obstacle. J. Eng. Phys., 1970; 19(3): 1081—1084 doi: 10.1007/BF00826231
    [2] Donaldson C D, Snedeker R S. A study of free jet impingement, Part 1. Mean properties of free and impinging jets. J. Fluid Mech., 1971; 45(02): 281—319 doi: 10.1017/S0022112071000053
    [3] Gubanova O I, Lunev V V, Plastinina L N. The central breakaway zone with interaction between a supersonic unexpanded jet and a barrier. Fluid Dyn., 1973; 6(2): 298—301 doi: 10.1007/BF01015070
    [4] Carling J C, Hunt B L. The near wall jet of a normally impinging, uniform, axisymmetric, supersonic jet. J. Fluid Mech., 1974; 66(1): 159 doi: 10.1017/S0022112074000127
    [5] Gutmark E, Wolfshtein M, Wygnanski I. The plane turbulent impinging jet. J. Fluid Mech., 1978; 88(1): 737—756 doi: 10.1017/S0022112078002360
    [6] Marsh A H. Noise measurements around a subsonic air jet impinging on a plane, rigid surface. J. Acoust. Soc. Am., 1961; 33(8): 1065—1066 doi: 10.1121/1.1908894
    [7] Ho C M, Nosseir N S. Dynamics of an impinging jet, Part 1. The feedback phenomenon. J. Fluid Mech., 1981; 105: 119—142 doi: 10.1017/S0022112081003133
    [8] Krothapalli A, Rajakuperan E, Alvi F S, et al. Flow field and noise characteristics of a supersonic impinging jet. J. Fluid Mech., 1999; 392(1): 155—181 doi: 10.1017/S0022112099005406
    [9] Henderson B. Connection between sound production and jet structure of the supersonic impinging jet. J. Acoust. Soc. Am., 2002; 111(2): 735—747 doi: 10.1121/1.1436069
    [10] Preisser J S, Block P J W. An experimental study of the aeroacoustic of a subsonic jet impinging normal to a large rigid surface. 3rd AIAA Aeroacoustics Conference, AIAA, Hanipton, Virginia, 1976: 520
    [11] Nakai Y, Fujimatsu N, Fujii K. Experimental study of underexpanded supersonic jet impingement on an inclined flat plate. AIAA J., 2006; 44(11): 2691—2699 doi: 10.2514/1.17514
    [12] Crafton J, Carter C, Sullivan J, et al. Pressure measurements on the impingement surface of sonic and sub-sonic jets impinging onto a flat plate at inclined angles. Exp. Fluids, 2006; 40(5): 697—707 doi: 10.1007/s00348-006-0107-z
    [13] Nonomura T, Goto Y, Fujii K. Aeroacoustic waves generated from a supersonic jet impinging on an inclined flat plate. Int. J. Aeroacoust., 2011; 10(4): 401—425 doi: 10.1260/1475-472X.10.4.401
    [14] Akamine M, Nakanishi Y, Okamoto K, et al. Acoustic phenomena from correctly expanded supersonic jet impinging on inclined plate. AIAA J., 2015; 53(7): 2061—2067 doi: 10.2514/1.J053953
    [15] Akamine M, Okamoto K, Gee K L, et al. Effect of nozzle-plate distance on acoustic phenomena from supersonic impinging jet. AIAA J., 2018; 56(5): 1943—1952 doi: 10.2514/1.J056504
    [16] Nonomura T, Honda H, Nagata Y et al. Plate-angle effects on acoustic waves from supersonic jets impinging on inclined plates. AIAA J., 2016; 54(3): 816—827 doi: 10.2514/1.J054152
    [17] Worden T J, Shih C, Alvi F S. Supersonic jet impingement on a model-scale jet blast deflector. AIAA J., 2017; 55(8): 2522—2536 doi: 10.2514/1.J055664
    [18] Powers R W, Mclaughlin D K, Morris P J. Noise reduction in supersonic jets exhausting over a simulated aircraft carrier deck. J. Aircr., 2018; 55(1): 310—324 doi: 10.2514/1.C034213
    [19] Powers R W, Mclaughlin D K, Morris P J. Noise reduction with fluidic inserts in supersonic jets exhausting over a simulated aircraft carrier deck. 21st AIAA/CEAS Aeroacoustics Conference, AIAA, Dallas, TX, 2015: 2374
    [20] Pilon A R. Land- and aircraft carrier-based F-35C jet blast deflector noise testing. 22nd AIAA/CEAS Aeroacoustics Conference, AIAA, Lyon, France, 2016: 2730
    [21] Ahuja K. Designing clean jet noise research facilities and making accurate jet noise measurements. 41st Aerospace Sciences Meeting and Exhibit, AIAA, Reno, Nevada, 2003: 706
    [22] Thurow B S, Samimy M, Lempert W R, et al. Compressibility effects on turbulence structures of axisymmetric mixing layers. Phys. Fluid, 2003; 15(6): 1755—1765 doi: 10.1063/1.1570829
    [23] Lau J C, Morris P J, Fisher M J. Measurements in subsonic and supersonic free jets using a laser velocimeter. J. Fluid Mech., 1979; 93(1): 1—27 doi: 10.1017/S0022112079001750
    [24] 万振华. 可压缩剪切流噪声的计算. 博士学位论文, 合肥: 中国科技大学, 2013: 65—89
    [25] Tam C K W, Colebiowski M, Seiner J M. On the two components of turbulent mixing noise from supersonic jets. Aeroacoustics Conference, AIAA, Reston, Virginia, 1996: 1716
    [26] Tanna H. An experimental study of jet noise, Part I: Turbulent mixing noise. J. Sound Vib., 1977; 50(3): 405—428 doi: 10.1016/0022-460X(77)90493-X
    [27] 颜大椿, 聂进, 孙智利. 低马赫数射流混合层中的相干声源. 声学学报, 1999; 24(5): 498—504 doi: 10.15949/j.cnki.0371-0025.1999.05.007
    [28] 张俊龙, 雷红胜, 田昊, 等. 亚声速矩形射流的噪声辐射特性和声源分布. 航空学报, 2020; 41(2): 123386 doi: 10.7527/S1000-6893.2019.23386
  • 加载中
计量
  • 文章访问数:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-19
  • 修回日期:  2022-07-05
  • 刊出日期:  2023-05-11

目录

    /

    返回文章
    返回