Broadband noise performance of subsonic jet with different impingement distances to a deflector
-
摘要:
通过全消声室实验研究了不同冲击距离(
L )下亚声速射流宽频噪声特性。利用远场传声器获得L = 30D ~2D (D 为喷口直径)的噪声数据, 并详细分析了频谱特性。试验结果表明, 减小冲击距离: (1) 上游所有频段的噪声都明显上升, 极角α = 120°总声压级(OASPL)在L < 10D 时增加了10~17 dB; (2) 下游α = 30°的噪声能量向低频转移, 且频谱在L < 10D 时变化不明显; (3) 偏流板产生噪声的中、高频段对边线影响较小,α = 90°的频谱迅速衰减, 在L < 10D 时形成陡峭的峰值。研究证实在噪声最强的方向(α = 120°), 随冲击距离的减小偏流板贡献的噪声功率占比呈线性增加。冲击距离小于势流核时, 偏流板贡献大部分噪声能量,L = 7D ~5D 时占比超过80%。另外射流冲击产生的噪声指向性明显, 冲击噪声和后缘分离噪声在不同方向取得主导地位, 相应频谱分别在上游和下游呈现高频主导和低频占优的特性。Abstract:To study the broadband noise characteristics of jet impingement on defector with different impact distances, an experimental study is carried out by using far-field microphones in a full anechoic chamber. Comprehensive data of the nozzle-plate distance (
L ) range between 30D (D is the diameter of nozzle exit) and 2D are obtained and the spectral characteristics are discussed. Reducing the impact distance, the results indicate: (1) The spectra increase significantly in all frequency bands, leading to an increment of the overall sound pressure level by 10–17 dB in the direction of polar angles (α ) ofα = 120° whenL < 10D ; (2) The noise energy of downstream directions transfers to lower frequency and the spectra ofα = 30° tend to collapse at different impingement distances whenL < 10D ; (3) Since medium and high frequency impingement noise has a little effect on the sideline directions, the spectra of polar angle of 90° attenuate rapidly which form a steep peak whenL < 10D . The quantitative analysis prove that the proportion of sound power of defector increases linearly with the decrease ofL in the direction of strongest noise (α = 120°). Most noise are produced by deflector for impingement distance less than the length of potential core, such as 80% atL = 7D– 5D . Moreover, the directivity of deflector noise is obvious. Impingement noise or trailing edge separation noise is dominated in different directions. Correspondingly, the low frequency and high frequency noise plays a dominant role in the upstream and downstream directions respectively.-
Key words:
- Impingement jet noise /
- Subsonic jet /
- Deflector /
- Impingement distance
-
表 1 传声器极角
传声器序号 极角 α (°) 备注 1 30 下游典型极角 2 40 3 50 4 60 5 70 6 80 7 85 8 90 边线典型极角 9 95 10 100 11 110 12 120 上游典型极角 -
[1] Ginzburg I P, Semiletenko B G, Terpigor’ev V S, et al. Some singularities of supersonic underexpanded jet interaction with a plane obstacle. J. Eng. Phys., 1970; 19(3): 1081—1084 doi: 10.1007/BF00826231 [2] Donaldson C D, Snedeker R S. A study of free jet impingement, Part 1. Mean properties of free and impinging jets. J. Fluid Mech., 1971; 45(02): 281—319 doi: 10.1017/S0022112071000053 [3] Gubanova O I, Lunev V V, Plastinina L N. The central breakaway zone with interaction between a supersonic unexpanded jet and a barrier. Fluid Dyn., 1973; 6(2): 298—301 doi: 10.1007/BF01015070 [4] Carling J C, Hunt B L. The near wall jet of a normally impinging, uniform, axisymmetric, supersonic jet. J. Fluid Mech., 1974; 66(1): 159 doi: 10.1017/S0022112074000127 [5] Gutmark E, Wolfshtein M, Wygnanski I. The plane turbulent impinging jet. J. Fluid Mech., 1978; 88(1): 737—756 doi: 10.1017/S0022112078002360 [6] Marsh A H. Noise measurements around a subsonic air jet impinging on a plane, rigid surface. J. Acoust. Soc. Am., 1961; 33(8): 1065—1066 doi: 10.1121/1.1908894 [7] Ho C M, Nosseir N S. Dynamics of an impinging jet, Part 1. The feedback phenomenon. J. Fluid Mech., 1981; 105: 119—142 doi: 10.1017/S0022112081003133 [8] Krothapalli A, Rajakuperan E, Alvi F S, et al. Flow field and noise characteristics of a supersonic impinging jet. J. Fluid Mech., 1999; 392(1): 155—181 doi: 10.1017/S0022112099005406 [9] Henderson B. Connection between sound production and jet structure of the supersonic impinging jet. J. Acoust. Soc. Am., 2002; 111(2): 735—747 doi: 10.1121/1.1436069 [10] Preisser J S, Block P J W. An experimental study of the aeroacoustic of a subsonic jet impinging normal to a large rigid surface. 3rd AIAA Aeroacoustics Conference, AIAA, Hanipton, Virginia, 1976: 520 [11] Nakai Y, Fujimatsu N, Fujii K. Experimental study of underexpanded supersonic jet impingement on an inclined flat plate. AIAA J., 2006; 44(11): 2691—2699 doi: 10.2514/1.17514 [12] Crafton J, Carter C, Sullivan J, et al. Pressure measurements on the impingement surface of sonic and sub-sonic jets impinging onto a flat plate at inclined angles. Exp. Fluids, 2006; 40(5): 697—707 doi: 10.1007/s00348-006-0107-z [13] Nonomura T, Goto Y, Fujii K. Aeroacoustic waves generated from a supersonic jet impinging on an inclined flat plate. Int. J. Aeroacoust., 2011; 10(4): 401—425 doi: 10.1260/1475-472X.10.4.401 [14] Akamine M, Nakanishi Y, Okamoto K, et al. Acoustic phenomena from correctly expanded supersonic jet impinging on inclined plate. AIAA J., 2015; 53(7): 2061—2067 doi: 10.2514/1.J053953 [15] Akamine M, Okamoto K, Gee K L, et al. Effect of nozzle-plate distance on acoustic phenomena from supersonic impinging jet. AIAA J., 2018; 56(5): 1943—1952 doi: 10.2514/1.J056504 [16] Nonomura T, Honda H, Nagata Y et al. Plate-angle effects on acoustic waves from supersonic jets impinging on inclined plates. AIAA J., 2016; 54(3): 816—827 doi: 10.2514/1.J054152 [17] Worden T J, Shih C, Alvi F S. Supersonic jet impingement on a model-scale jet blast deflector. AIAA J., 2017; 55(8): 2522—2536 doi: 10.2514/1.J055664 [18] Powers R W, Mclaughlin D K, Morris P J. Noise reduction in supersonic jets exhausting over a simulated aircraft carrier deck. J. Aircr., 2018; 55(1): 310—324 doi: 10.2514/1.C034213 [19] Powers R W, Mclaughlin D K, Morris P J. Noise reduction with fluidic inserts in supersonic jets exhausting over a simulated aircraft carrier deck. 21st AIAA/CEAS Aeroacoustics Conference, AIAA, Dallas, TX, 2015: 2374 [20] Pilon A R. Land- and aircraft carrier-based F-35C jet blast deflector noise testing. 22nd AIAA/CEAS Aeroacoustics Conference, AIAA, Lyon, France, 2016: 2730 [21] Ahuja K. Designing clean jet noise research facilities and making accurate jet noise measurements. 41st Aerospace Sciences Meeting and Exhibit, AIAA, Reno, Nevada, 2003: 706 [22] Thurow B S, Samimy M, Lempert W R, et al. Compressibility effects on turbulence structures of axisymmetric mixing layers. Phys. Fluid, 2003; 15(6): 1755—1765 doi: 10.1063/1.1570829 [23] Lau J C, Morris P J, Fisher M J. Measurements in subsonic and supersonic free jets using a laser velocimeter. J. Fluid Mech., 1979; 93(1): 1—27 doi: 10.1017/S0022112079001750 [24] 万振华. 可压缩剪切流噪声的计算. 博士学位论文, 合肥: 中国科技大学, 2013: 65—89 [25] Tam C K W, Colebiowski M, Seiner J M. On the two components of turbulent mixing noise from supersonic jets. Aeroacoustics Conference, AIAA, Reston, Virginia, 1996: 1716 [26] Tanna H. An experimental study of jet noise, Part I: Turbulent mixing noise. J. Sound Vib., 1977; 50(3): 405—428 doi: 10.1016/0022-460X(77)90493-X [27] 颜大椿, 聂进, 孙智利. 低马赫数射流混合层中的相干声源. 声学学报, 1999; 24(5): 498—504 doi: 10.15949/j.cnki.0371-0025.1999.05.007 [28] 张俊龙, 雷红胜, 田昊, 等. 亚声速矩形射流的噪声辐射特性和声源分布. 航空学报, 2020; 41(2): 123386 doi: 10.7527/S1000-6893.2019.23386 -
计量
- 文章访问数: 27
- 被引次数: 0