Research on sound absorption characteristics of corrugated perforated plate
-
摘要:
研究了平面波垂直入射和掠入射两种情况下波纹穿孔板对声波的耗散作用, 结果表明在这两种情况下波纹穿孔板的声学特性都有别于平板穿孔板。在垂直入射条件下, 通过“等效穿孔率”可以在中、低频率范围内使波纹穿孔板和平板穿孔板的吸声特性“重合”。波纹穿孔板在高频范围会出现异于平板穿孔板的双尖峰现象, 进一步研究发现这是由波纹板形状导致的背腔深度的连续变化所引起的。在掠入射条件下, 波纹穿孔板与平板穿孔板无法通过“等效穿孔率”替代。波纹穿孔板的板高和板长对其声学性能都有明显影响, 当波纹穿孔板夹角(板高与1/4板长对应的正切角)相同时, 在板长小于75 mm范围内波纹穿孔板有相似的声学性能。
Abstract:The dissipative effect of corrugated perforated plate on acoustic wave is studied in two cases of plane wave vertical incidence and grazing incidence in this paper. The results show that the acoustic performance of the corrugated perforated plate in both cases is different from that of the flat perforated plate. Under the condition of vertical incidence, the equivalent perforation rate can make the sound absorption coefficients of the corrugated perforated plate and the flat perforated plate coincide in the range of medium and low frequencies, but the corrugated perforated plate will have a double peak phenomenon that is different from the flat perforated plate at high frequencies. Further study reveals that it is due to the continuous change of the depth of the back cavity caused by the shape of the corrugated plate. Under the condition of grazing incidence, the corrugated perforated plate and flat perforated plate cannot be replaced by the equivalent perforation rate. The height and length of the corrugated perforated plate have obvious effects on its acoustic performance. When the angle of the corrugated plate is constant (the tangent angle corresponding to the plate height and a quarter of the plate length), the corrugated perforated plate with the plate length less than 75 mm has similar acoustic performance.
-
表 1 平板声衬结构参数
穿孔率 σ 板厚 t (mm) 孔径 d (mm) 背腔深度 b (mm) 1% 1 0.5 25 表 2 声衬段结构参数
管径 R (mm) 声衬段长度 L (mm) 穿孔率 σ 板厚 t (mm) 孔径 d (mm) 背腔深度 b (mm) 100 300 2% 0.87 1.83 25 表 3 波纹穿孔板几何参数
板长 λ (mm) 12.5 15 20 25 板高 h (mm) θ = 0° 0.55 0.66 0.88 1.10 θ = 30° 1.80 2.17 2.89 3.61 θ = 50° 3.72 4.47 5.96 7.45 表 4 波纹穿孔板几何参数
板长 λ (mm) 30 50 75 150 板高 h (mm) θ = 25° 3.50 5.83 8.74 17.50 θ = 35° 5.25 8.75 13.13 26.26 表 5 等效穿孔率验证参数
波纹板序号 波纹板板长 λ (mm) 波纹板板高 h (mm) 波纹板穿孔率 σ (%) 等效穿孔率 σ' (%) 波纹板 1 300 15 2 2.05 波纹板 2 100 10 2 2.18 波纹板 3 30 5 2 2.47 -
[1] Lieuwen T C, Yang V. Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms, and modeling. Alexander Bell Drive, VA: American Institute of Aeronautics and Astronautics, University of Nottingham, 2005: 3—24 [2] Culick F E. Unsteady motions in combustion chambers for propulsion systems. Neuilly, NATO: The Research and Technology Organisation of NATO, 2006: 5—17 [3] Poinsot T. Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst., 2017; 36(1): 1—28 doi: 10.1016/j.proci.2016.05.007 [4] Lahiri C, Bake F. A review of bias flow liners for acoustic damping in gas turbine combustors. J. Sound Vib., 2017; 400: 564—605 doi: 10.1016/j.jsv.2017.04.005 [5] Gullaud E, Nicoud F. Effect of perforated plates on the acoustics of annular combustors. AIAA J., 2012; 50(12): 2629—2642 doi: 10.2514/1.J050716 [6] Bellucci V, Flohr P, Paschereit C, et al. On the use of Helmholtz resonators for damping acoustic pulsations in industrial gas turbines. J. Eng. Gas Turbines Power, 2004; 126(2): 271—275 doi: 10.1115/1.1473152 [7] Dupere I D, Dowling A P. The use of Helmholtz resonators in a practical combustor. J. Eng. Gas Turbines Power, 2005; 127(2): 268—275 doi: 10.1115/1.1806838 [8] Bothien M R, Noiray N, Schuermans B. A novel damping device for broadband attenuation of low-frequency combustion pulsations in gas turbines. J. Eng. Gas Turbines Power, 2014; 136(4): 041504 doi: 10.1115/1.4025761 [9] Sohn C H, Ju H P. A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators. Aerosp. Sci. Technol., 2011; 15(8): 606—614 doi: 10.1016/j.ast.2010.12.004 [10] Zhao D, Li X Y. A review of acoustic dampers applied to combustion chambers in aerospace industry. Prog. Aerosp. Sci., 2015; 74: 114—130 doi: 10.1016/j.paerosci.2014.12.003 [11] Carlton T J, Thinkham N R. Means for eliminating screech in jet propulsion systems: US 3041836 A. 1962-07-03 [12] Jiang C Y, Huang L X. Characterization of low-frequency acoustic wave propagation through a periodic corrugated waveguide. J Sound Vib., 2018; 418: 79—99 doi: 10.1016/j.jsv.2017.12.024 [13] Wang C Q, Liu X. Investigation of the acoustic properties of corrugated micro-perforated panel backed by a rigid wall. Mech. Syst. Signal Process., 2020; 140: 106699 doi: 10.1016/j.ymssp.2020.106699 [14] COMSOL AB, Stockholm, Sweden. COMSOL Multiphysics® v. 5.1. https://cn.comsol.com [15] 杜功焕, 朱哲民, 龚秀芬. 声学基础. 第3版. 南京: 南京大学出版社, 2012: 183—185 [16] 辛博. 切向流对声衬声阻抗的影响及声衬表面非稳定波机理的研究. 博士学位论文, 北京: 北京航空航天大学, 2019: 79—81 [17] 全国声学标准化委员会. 声学 阻抗管中吸声系数和声阻抗的测量, 第2部分 传递函数法: GB/T 18696.2-2002. 北京: 中国标准出版社, 2002: 8—9 [18] 王晓宇. 传递单元方法及其在航空发动机短舱声学问题中的应用. 博士学位论文, 北京: 北京航空航天大学, 2010: 54—55 [19] Namba M, Fukushige K. Application of the equivalent surface source method to the acoustics of duct systems with non-uniform wall impedance. Prog. Aerosp. Sci., 1980; 73(1): 125—146 doi: 10.1016/0022-460X(80)90497-6 [20] Morfey C L. Sound transmission and generation in ducts with flow. J Sound Vib., 1971; 14(1): 37—55 doi: 10.1016/0022-460X(71)90506-2 [21] Allam S, Abom M. A new type of muffler based on microperforated tubes. J. Vib. Acoust., 2011; 133(3): 031005 doi: 10.1115/1.4002956 -
计量
- 文章访问数: 40
- 被引次数: 0