EI / SCOPUS / CSCD 收录

中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种热对流式MEMS二维质点振速传感器

许相园 孙远 赵静 葛浩 鲍明 卢明辉 朱梦尧 黎椿建 李晓东

许相园, 孙远, 赵静, 葛浩, 鲍明, 卢明辉, 朱梦尧, 黎椿建, 李晓东. 一种热对流式MEMS二维质点振速传感器[J]. 声学学报, 2023, 48(3): 541-548. doi: 10.15949/j.cnki.0371-0025.2023.03.013
引用本文: 许相园, 孙远, 赵静, 葛浩, 鲍明, 卢明辉, 朱梦尧, 黎椿建, 李晓东. 一种热对流式MEMS二维质点振速传感器[J]. 声学学报, 2023, 48(3): 541-548. doi: 10.15949/j.cnki.0371-0025.2023.03.013
XU Xiangyuan, SUN Yuan, ZHAO Jing, GE Hao, BAO Ming, LU Minghui, ZHU Mengyao, LI Chunjian, LI Xiaodong. A novel two-dimensional thermal-convection based MEMS acoustic vector sensor[J]. ACTA ACUSTICA, 2023, 48(3): 541-548. doi: 10.15949/j.cnki.0371-0025.2023.03.013
Citation: XU Xiangyuan, SUN Yuan, ZHAO Jing, GE Hao, BAO Ming, LU Minghui, ZHU Mengyao, LI Chunjian, LI Xiaodong. A novel two-dimensional thermal-convection based MEMS acoustic vector sensor[J]. ACTA ACUSTICA, 2023, 48(3): 541-548. doi: 10.15949/j.cnki.0371-0025.2023.03.013

一种热对流式MEMS二维质点振速传感器

doi: 10.15949/j.cnki.0371-0025.2023.03.013
基金项目: 国家自然科学基金项目(11774379)资助
详细信息
    通讯作者:

    鲍明, baoming@mail.ioa.ac.cn

    卢明辉, luminghui@nju.edu.cn

  • 中图分类号: 43.38

A novel two-dimensional thermal-convection based MEMS acoustic vector sensor

  • 摘要:

    由空气质点振速传感器和声压传感器组成的矢量传声器是测量声场空间信息的重要方式。本文设计了一种新型热对流式二维质点振速传感器, 不同于传统平行线式传感机制, 该器件由多线进行交叉连结形成一个中央十字加热器和四个直角测温线, 构成新的局域加热和温度传感方式, 基于此设计能够获得更高的灵敏度并具有理想的正交性。通过数值分析对其传感机制进行了详细分析, 并使用MEMS工艺进行器件制备和性能验证。实验结果表明, 该器件具有良好的响应灵敏度和接近完美的正交指向性。所提出器件在体积受限的声场测量中具有潜在应用价值。

     

  • 图 1  所设计传感器示意图

    图 2  $x$轴传感过程示意图(红色线为加热线, 灰色线为测温线)

    图 3  点加热时传感原理和温度场分布 (a) 传感示意图 (中心红色线为加热线, 两侧灰色线为测温线); (b) 稳态和受扰动时温度场分布

    图 4  线加热时传感原理和温度场分布 (a) 传感示意图 (中心红色线为加热线, 两侧灰色线为测温线); (b) 稳态和受扰动时温度场分布

    图 5  温度变化与频率响应之间的关系

    图 6  线热源的温度梯度与位置之间关系

    图 7  点热源和线热源受扰动时温度变化与位置之间关系

    图 8  所制备传感器SEM照片

    图 9  传感器制备工艺流程

    图 10  实验测试装置

    图 11  线热源模式、点热源模式以及两种模式共同工作时的灵敏度频响曲线

    图 12  传感器在500 Hz和1000 Hz激励下指向性测试结果

  • [1] Nehorai A, Paldi E. Acoustic vector-sensor array processing. IEEE Trans. Signal Process., 1994; 42(9): 2481—2491 doi: 10.1109/78.317869
    [2] Hawkes M, Nehorai A. Acoustic vector-sensor beamforming and Capon direction estimation. IEEE Trans. Signal Process., 1998; 46(9): 2291—2304 doi: 10.1109/78.709509
    [3] Pedrero A, Navacerrada M Á, de la Prida D, et al. On the accuracy of the sound absorption measurement with an impedance gun. Appl. Acoust., 2020; 158: 107039 doi: 10.1016/j.apacoust.2019.107039
    [4] Li M L, van Keulen W, Tijs E, et al. Sound absorption measurement of road surface with in situ technology. Appl. Acoust., 2015; 88: 12—21 doi: 10.1016/j.apacoust.2014.07.009
    [5] Jacobsen F, Liu Y. Near field acoustic holography with particle velocity transducers. J. Acoust. Soc. Am., 2005; 118(5): 3139—3144 doi: 10.1121/1.2082687
    [6] Duan W, Kirby R, Prisutova J, et al. Measurement of complex acoustic intensity in an acoustic waveguide. J. Acoust. Soc. Am., 2013; 134(5): 3674—3685 doi: 10.1121/1.4821214
    [7] de Bree H-E, Leussink P, Korthorst T, et al. The μ -flown: a novel device measuring acoustical flows. Sens. Actuators A, 1996; 54: 552—557 doi: 10.1016/S0924-4247(97)80013-1
    [8] 赵龙江, 冯杰, 冯晖, 等. 用于空气声测量的质点振速传感器. 声学学报, 2015; 40(4): 598—606 doi: 10.15949/j.cnki.0371-0025.2015.04.013
    [9] Svetovoy V B, Winter I. Model of the μ -flown microphone. Sens. Actuators A, 2000; 86(3): 171—181 doi: 10.1016/S0924-4247(00)00454-4
    [10] van Honschoten J W, Svetovoy V B, Krijnen G J M, et al. Optimization of a thermal flow sensor for acoustic particle velocity measurements. J. Microelectromech. Syst., 2005; 14(3): 436—443 doi: 10.1109/JMEMS.2005.844848
    [11] Levin D, Habets E A, Gannot S. Maximum likelihood estimation of direction of arrival using an acoustic vector-sensor. J. Acoust. Soc. Am., 2012; 131(2): 1240—1248 doi: 10.1121/1.3676699
    [12] Liu Z, Ruan X, He J. Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array. Multidim. Syst. Sign. Process., 2013; 24: 105—120 doi: 10.1007/s11045-011-0158-z
    [13] Zhong X, Premkumar A. Particle filtering approaches for multiple acoustic source detection and 2-D direction of arrival estimation using a single acoustic vector sensor. IEEE Trans. Signal Process., 2012; 60(9): 4719—4733 doi: 10.1109/TSP.2012.2199987
    [14] 王笑楠, 李光, 钟华森, 等. 矢量语音传感器微阵列. 电声技术, 2021; 45(11): 21—25 doi: 10.16311/j.audioe.2021.11.006
    [15] Yntema D R, van Honschoten J W, Wiegerink R J. An integrated 3D sound intensity sensor using four-wire particle velocity sensors: I. Design and characterization. J. Micromech. Microeng., 2010; 20(1): 015042 doi: 10.1088/0960-1317/20/1/015042
    [16] van Honschoten J W, Yntema D R, Wiegerink R J. An integrated 3D sound intensity sensor using four-wire particle velocity sensors: II. Modelling. J. Micromech. Microeng., 2010; 20(1): 015043 doi: 10.1088/0960-1317/20/1/015043
    [17] van Honschoten J W, Yntema D R, Wiegerink R J, et al. Analysis of a three-dimensional particle velocity sensor for design optimization. J. Micromech. Microeng., 2007; 17(7): S137 doi: 10.1088/0960-1317/17/7/S11
    [18] Pjetri O, Wiegerink R J, Lammerink T S, et al. A 2D acoustic particle velocity sensor with perfectly orthogonal sensitivity directions. Sens. Actuators A, 2016; 246: 28—34 doi: 10.1016/j.sna.2016.04.023
    [19] Pjetri O, Wiegerink R J, Krijnen G J M. A 2D particle velocity sensor with minimal flow disturbance. IEEE Sens. J., 2016; 16(24): 8706—8714 doi: 10.1109/JSEN.2016.2570213
    [20] van Honschoten J W, Krijene G J M, Svetovoy V B, et al. Analytic model of a two-wire thermal sensor for flow and sound measurements. J. Micromech. Microeng., 2004; 14(11): 1468 doi: 10.1088/0960-1317/14/11/006
    [21] Basten T G, de Bree H E. Full bandwidth calibration procedure for acoustic probes containing a pressure and particle velocity sensor. J. Acoust. Soc. Am., 2010; 127(1): 264—270 doi: 10.1121/1.3268608
  • 加载中
计量
  • 文章访问数:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-09
  • 修回日期:  2022-05-01
  • 刊出日期:  2023-05-11

目录

    /

    返回文章
    返回