A novel two-dimensional thermal-convection based MEMS acoustic vector sensor
-
摘要:
由空气质点振速传感器和声压传感器组成的矢量传声器是测量声场空间信息的重要方式。本文设计了一种新型热对流式二维质点振速传感器, 不同于传统平行线式传感机制, 该器件由多线进行交叉连结形成一个中央十字加热器和四个直角测温线, 构成新的局域加热和温度传感方式, 基于此设计能够获得更高的灵敏度并具有理想的正交性。通过数值分析对其传感机制进行了详细分析, 并使用MEMS工艺进行器件制备和性能验证。实验结果表明, 该器件具有良好的响应灵敏度和接近完美的正交指向性。所提出器件在体积受限的声场测量中具有潜在应用价值。
Abstract:An acoustic vector sensor is an important sensor for capturing sound field information. In various applications, a precise integrated 2D sensor is desired, but manufacturing remains challenging. A novel 2D thermal convection based acoustic vector sensor is introduced, which consists of crossed multiple wires. The central crossed wire acts as a heater and the four right-angle shape wires act as thermal detectors. Based on this design, the sensor provides higher sensitivity and a direct two-dimensional acoustic particle velocity measurement. The sensor is optimized by numerical simulation and then fabricated using MEMS process. Finally, experiments have demonstrated that the device has good sensitivity response and orthogonal characteristics.
-
Key words:
- Acoustic vector sensor /
- Particle velocity /
- Hot-wire sensor /
- Microfabrication
-
[1] Nehorai A, Paldi E. Acoustic vector-sensor array processing. IEEE Trans. Signal Process., 1994; 42(9): 2481—2491 doi: 10.1109/78.317869 [2] Hawkes M, Nehorai A. Acoustic vector-sensor beamforming and Capon direction estimation. IEEE Trans. Signal Process., 1998; 46(9): 2291—2304 doi: 10.1109/78.709509 [3] Pedrero A, Navacerrada M Á, de la Prida D, et al. On the accuracy of the sound absorption measurement with an impedance gun. Appl. Acoust., 2020; 158: 107039 doi: 10.1016/j.apacoust.2019.107039 [4] Li M L, van Keulen W, Tijs E, et al. Sound absorption measurement of road surface with in situ technology. Appl. Acoust., 2015; 88: 12—21 doi: 10.1016/j.apacoust.2014.07.009 [5] Jacobsen F, Liu Y. Near field acoustic holography with particle velocity transducers. J. Acoust. Soc. Am., 2005; 118(5): 3139—3144 doi: 10.1121/1.2082687 [6] Duan W, Kirby R, Prisutova J, et al. Measurement of complex acoustic intensity in an acoustic waveguide. J. Acoust. Soc. Am., 2013; 134(5): 3674—3685 doi: 10.1121/1.4821214 [7] de Bree H-E, Leussink P, Korthorst T, et al. The μ -flown: a novel device measuring acoustical flows. Sens. Actuators A, 1996; 54: 552—557 doi: 10.1016/S0924-4247(97)80013-1 [8] 赵龙江, 冯杰, 冯晖, 等. 用于空气声测量的质点振速传感器. 声学学报, 2015; 40(4): 598—606 doi: 10.15949/j.cnki.0371-0025.2015.04.013 [9] Svetovoy V B, Winter I. Model of the μ -flown microphone. Sens. Actuators A, 2000; 86(3): 171—181 doi: 10.1016/S0924-4247(00)00454-4 [10] van Honschoten J W, Svetovoy V B, Krijnen G J M, et al. Optimization of a thermal flow sensor for acoustic particle velocity measurements. J. Microelectromech. Syst., 2005; 14(3): 436—443 doi: 10.1109/JMEMS.2005.844848 [11] Levin D, Habets E A, Gannot S. Maximum likelihood estimation of direction of arrival using an acoustic vector-sensor. J. Acoust. Soc. Am., 2012; 131(2): 1240—1248 doi: 10.1121/1.3676699 [12] Liu Z, Ruan X, He J. Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array. Multidim. Syst. Sign. Process., 2013; 24: 105—120 doi: 10.1007/s11045-011-0158-z [13] Zhong X, Premkumar A. Particle filtering approaches for multiple acoustic source detection and 2-D direction of arrival estimation using a single acoustic vector sensor. IEEE Trans. Signal Process., 2012; 60(9): 4719—4733 doi: 10.1109/TSP.2012.2199987 [14] 王笑楠, 李光, 钟华森, 等. 矢量语音传感器微阵列. 电声技术, 2021; 45(11): 21—25 doi: 10.16311/j.audioe.2021.11.006 [15] Yntema D R, van Honschoten J W, Wiegerink R J. An integrated 3D sound intensity sensor using four-wire particle velocity sensors: I. Design and characterization. J. Micromech. Microeng., 2010; 20(1): 015042 doi: 10.1088/0960-1317/20/1/015042 [16] van Honschoten J W, Yntema D R, Wiegerink R J. An integrated 3D sound intensity sensor using four-wire particle velocity sensors: II. Modelling. J. Micromech. Microeng., 2010; 20(1): 015043 doi: 10.1088/0960-1317/20/1/015043 [17] van Honschoten J W, Yntema D R, Wiegerink R J, et al. Analysis of a three-dimensional particle velocity sensor for design optimization. J. Micromech. Microeng., 2007; 17(7): S137 doi: 10.1088/0960-1317/17/7/S11 [18] Pjetri O, Wiegerink R J, Lammerink T S, et al. A 2D acoustic particle velocity sensor with perfectly orthogonal sensitivity directions. Sens. Actuators A, 2016; 246: 28—34 doi: 10.1016/j.sna.2016.04.023 [19] Pjetri O, Wiegerink R J, Krijnen G J M. A 2D particle velocity sensor with minimal flow disturbance. IEEE Sens. J., 2016; 16(24): 8706—8714 doi: 10.1109/JSEN.2016.2570213 [20] van Honschoten J W, Krijene G J M, Svetovoy V B, et al. Analytic model of a two-wire thermal sensor for flow and sound measurements. J. Micromech. Microeng., 2004; 14(11): 1468 doi: 10.1088/0960-1317/14/11/006 [21] Basten T G, de Bree H E. Full bandwidth calibration procedure for acoustic probes containing a pressure and particle velocity sensor. J. Acoust. Soc. Am., 2010; 127(1): 264—270 doi: 10.1121/1.3268608 -
计量
- 文章访问数: 41
- 被引次数: 0