Three-dimensional beamforming for small aperture planar acoustic vector sensor array
-
摘要:
提出了一种基于声场多极子展开的小尺寸声矢量平面阵三维波束形成方法。该方法利用了声场的垂直振速信息, 并结合球谐波函数与多极子模态之间的联系, 可用二维的阵列结构合成指向任意方向的三维波束图, 简化了三维波束形成所需的阵列结构。以3 × 3均匀矩形阵为例的仿真结果表明, 在相邻阵元间距小于0.2倍信号波长时, 所提方法引入的差分近似误差可被忽略, 所得阵列波束图接近理论波束图。相比于声压球面阵三维波束形成方法, 所提方法在低频段能在获得相同阵增益的同时有着更好的稳健性, 为实现小尺寸阵列的三维波束形成提供了一种可靠的方法。
Abstract:A method of three-dimensional beamforming, based on the multipole expansions of the sound field, is proposed in this paper and applied to the small aperture acoustic vector planar array. The desired three-dimensional beam pattern can be synthesized with a two-dimensional array structure by combining the vertical particle velocity component of the sound field and the relationship between the spherical harmonics and the multipole modes. Therefore, the required array structure can be simplified for a three-dimensional beamforming. For illustration, a 3 × 3 rectangular vector sensor array was considered. Simulation results indicate that the error introduced by the approximations for multipole modes extraction can be ignored and the obtained beam pattern approximates the theoretical beam pattern when the spacing of adjacent vector sensors is less than one-fifth of the signal wavelength. Compared to the three-dimensional beamforming based on the spherical harmonic decomposition of the sound field, the proposed method achieves comparable array gain with better robustness in the low frequency band. Therefore, a reliable approach for low-frequency three-dimensional target detection is provided.
-
图 2 平面阵2阶振速差分示意图 (a)
${\partial ^3}p/\partial {x^3}$ ; (b)${\partial ^3}p/\partial {x^2}\partial y$ ; (c)${\partial ^3}p/\partial {x^2}\partial {\textit{z}}$ ; (d)${\partial ^3}p/\partial x{\partial ^2}y$ ; (e)${\partial ^3}p/\partial x\partial y\partial {\textit{z}}$ ; (f)${\partial ^3}p/\partial {y^3}$ ; (g)${\partial ^3}p/\partial {y^2}\partial {\textit{z}}$ ; (h) 阵列俯视图 -
[1] 孙梅, 周士弘, 李整林, 等. 基于矢量水听器的深海直达波区域声传播特性及其应用. 物理学报, 2016; 65(9): 094302 doi: 10.7498/aps.65.094302 [2] Flanagan J L, Johnston J D, Zahn R, et al. Computer-steered microphone arrays for sound transduction in large rooms. J. Acoust. Soc. Am., 1985; 78(5): 1508—1518 doi: 10.1121/1.392786 [3] Meyer J, Elko G W. A highly scalable sphercial microphone array based on an orthonormal decomposition of the soundfiled. IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, Florida, USA, 2002: 1781—1784 [4] 厉剑, 柯雨璇, 彭任华, 等. 球谐域类正则化宽带超指向性波束形成算法. 声学学报, 2020; 45(2): 145—160 doi: 10.15949/j.cnki.0371-0025.2020.02.001 [5] Rafaely B. Analysis and design of spherical microphone arrays. IEEE/ACM Trans. Audio Speech Lang., 2005; 13(1): 135—143 doi: 10.1109/TSA.2004.839244 [6] Lai C C, Nordholm S, Leung Y H. Design of steerable spherical broadband beamformers with flexible sensor configurations. IEEE/ACM Trans. Audio Speech Lang., 2013; 21(2): 427—438 doi: 10.1109/TASL.2012.2219527 [7] Abhayapala T D, Gupta A. Spherical harmonic analysis of wavefields using multiple circular sensor arrays. IEEE/ACM Trans. Audio Speech Lang., 2010; 18(6): 1655—1666 doi: 10.1109/TASL.2009.2038821 [8] Cray B A, Evora V M, Nuttall A H. Highly directional acoustic receivers. J. Acoust. Soc. Am., 2003; 113(3): 1526—1532 doi: 10.1121/1.1543851 [9] 王绪虎, 陈建峰, 韩晶, 等. 环境噪声场中二阶组合水听器的空间相关性. 振动与冲击, 2013; 32(21): 74—79 doi: 10.3969/j.issn.1000-3835.2013.21.013 [10] 孙心毅. 基于矢量水听器的高指向性二阶水听器的研究. 博士学位论文, 哈尔滨: 哈尔滨工程大学, 2014: 38—71 [11] Schmidlin D J. Directionality of generalized acoustic sensors of arbitrary order. J. Acoust. Soc. Am., 2007; 121(6): 3569—3578 doi: 10.1121/1.2724239 [12] Zhao L, Benesty J, Chen J. Design of robust differential microphone arrays with the Jacobi-Anger expansion. Appl. Acoust., 2016; 110: 194—206 doi: 10.1016/j.apacoust.2016.03.015 [13] Huang G, Cohen I, Chen J, et al. Continuously steerable differential beamformers with null constraints for circular microphone arrays. J. Acoust. Soc. Am., 2020; 148(3): 1248—1258 doi: 10.1121/10.0001770 [14] 韩欣宇, 吴鸣, 张国昌, 等. 同心圆环阵列模态波束形成器设计. 声学学报, 2021; 46(4): 564—575 doi: 10.15949/j.cnki.0371-0025.2021.04.008 [15] 郭俊媛, 杨士莪, 朴胜春, 等. 基于超指向性多极子矢量阵的水下低频声源方位估计方法研究. 物理学报, 2016; 65(13): 134303 doi: 10.7498/aps.65.134303 [16] Guo X, Yang S, Miron S. Low-frequency beamforming for a miniaturized aperture three-by-three uniform rectangular array of acoustic vector sensors. J. Acoust. Soc. Am., 2015; 138(6): 3873—3883 doi: 10.1121/1.4937759 [17] 汪勇, 杨益新. 圆环形传感器阵列超指向性频率不变响应波束优化方法. 声学学报, 2018; 43(4): 620—632 doi: 10.15949/j.cnki.0371-0025.2018.04.022 [18] Zhao X, Huang G, Chen J, et al. On the design of 3D steerable beamformers with uniform concentric circular microphone arrays. IEEE/ACM Trans. Audio Speech Lang., 2021; 29: 2764—2778 doi: 10.1109/TASLP.2021.3103129 [19] Gur B. Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays. J. Acoust. Soc. Am., 2014; 135(6): 3463—3473 doi: 10.1121/1.4876180 [20] Rafaely B. Fundamentals of spherical array processing. Berlin, Germany: Springer, 2015: 125—130 [21] 汪洪璋, 杨士莪. 声学原理. 哈尔滨: 哈尔滨工程大学出版社, 1969: 133—136 [22] Hawkes M, Nehorai A. Acoustic vector-sensor correlations in ambient noise. IEEE J. Oceanic Eng., 2001; 26(3): 337—347 doi: 10.1109/48.946508 -
计量
- 文章访问数: 52
- 被引次数: 0