Polar code construction method for the polar coded modulation orthogonal frequency division multiplexing underwater acoustic communication
-
摘要:
为进一步提高水声通信可靠性和频带利用率, 针对极化编码调制的水声通信需求和信道特性, 基于蒙特卡洛法提出动态水声信道认知优化统计目标参数、联合译码的判决反馈信道估计两点改进, 建立了适用于编码调制水声信道中的极化码构造算法。为验证该算法性能, 建立了极化编码调制水声通信的两步应用机制。通过仿真, 比对并分析改进前后的极化码构造方法性能、对时变信道的鲁棒性, 以及在不同映射规则下的联合比特交织和多级编码的极化编码调制水声通信性能, 并与低密度校验(LDPC)编码调制系统进行对比。湖试结果表明, 提出的极化编码调制水声通信方案有效保证了信息在浅水水声信道中的可靠传输, 在信噪比约为14 dB、通信距离约1 km时, 实现无误码传输, 性能优于相同条件下的LDPC编码调制系统。
Abstract:To further improve the reliability and band efficiency of the underwater acoustic communication (UWC), this paper offers a polar code construction algorithm based on the Monte Carlo method with two improvements for polar coded modulation (PCM) communication needs and the underwater acoustic (UWA) channel characteristics to match the underwater acoustic polarized channel of coded modulation. These optimizations are optimizing Monte Carlo statistics parameters based on the dynamical cognitive of the channel, and jointing decoding and decision feedback channel estimation. The proposed polar code construction method is then verified by establishing a two-step PCM UWC application mechanism. Through simulation, the performance of polar code construction methods before and after improvement, and the robustness to time-varying channels are then compared and analyzed, as well as the performance of polar code modulated UWC system with joint bit-interleaved coded modulation (BICM) and combination with multilevel coded modulation (MLCM) under different mapping rules. Also, it is compared with the low density parity check (LDPC) coded modulation system. The lake experiment demonstrates that the PCM UWC scheme suggested in this paper effectively ensures the reliable transmission of information in the shallow water channel, achieves error-free transmission at a signal-to-noise ratio of about 14 dB and a communication distance of about 1 km, and also has better error correction than the LDPC coded modulation system under the same circumstances.
-
图 4 QPSK MLPCM在极化码构造方法统计参数优化前后的性能对比(N = 512,R = 0.5) (a) 极化码构造方法优化前后随蒙特卡洛统计次数变化的性能对比,Eb/N0 = 2 dB; (b) 极化码构造方法优化前后性能对比
(方法1: 基于编码调制极化子信道误码率; 方法2: 基于编码调制极化子信道容量; 优化前: 原始蒙特卡洛方法[13])
表 1 系统参数
变量 符号 数值 ${f_c}$ 载波频率 12 kHz $ B $ 带宽 8 kHz $ {f_s} $ 采样频率 48 kHz $ D $ 子载波数 341 $\Delta f$ 子载波带宽 23.4 Hz $ \Delta {s_D} $ 导频间隔 4 $ T $ OFDM符号时长 42.7 ms ${T_{\rm cp} }$ 循环前缀 10.7 ms $ {T_g} $ 保护间隔 300 ms $ {N_{bl}} $ 每次传输的数据块数量 20 $ N $ 极化码码长 512 $ m $ 调相阶数 2 $ R $ 极化码码率 1/2 $ {R_D} $ 通信速率 4.8 kb/s 表 2 湖试结果
编码调制类型 QPSKBIPCM QPSKMLPCM QPSKBICM+LDPC 码长 N 256 512 256 512 256 512 Eb/N0 (dB) 14.9 13.5 14.4 12.3 15.1 13.2 无编码误码率 0.109 0.098 0.10 0.103 0.101 0.105 误码率 0.0013 0 0.0008 0 0.0078 0.0047 -
[1] Zhou S, Wang Z. OFDM for underwater acoustic communications. New York, USA: John Wiley & Sons, 2014 [2] Qiao G, Babar Z, Ma L, et al. MIMO-OFDM underwater acoustic communication systems: A review. Phys. Commun., 2017; 23: 56—64 doi: 10.1016/j.phycom.2017.02.007 [3] Kochanska I. Reliable OFDM data transmission with pilot tones and error-correction coding in shallow underwater acoustic channel. Appl. Sci., 2020; 10(6): 2173 doi: 10.3390/app10062173 [4] Falk M, Bauch G, Nissen I. On channel codes for short underwater messages. Information, 2020; 11(2): 58 doi: 10.3390/info11020058 [5] 朱维庆, 朱敏, 武岩波, 等. 载人潜水器“蛟龙”号的水声通信信号处理. 声学学报, 2012; 37(6): 565—573 doi: 10.15949/j.cnki.0371-0025.2012.06.001 [6] Ankan E, ul Hassan N, Lentmaier M, et al. Challenges and some new directions in channel coding. J. Commun. Networks., 2015; 17(4): 328—338 doi: 10.1109/JCN.2015.000063 [7] Zia M Y I, Poncela J, Otero P. State-of-the-art underwater acoustic communication modems: Classifications, analyses and design Challenges. Wirel. Pers. Commun., 2021; 116(2): 1325—1360 doi: 10.1007/s11277-020-07431-x [8] Arikan E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory., 2009; 55(7): 3051—3073 doi: 10.1109/TIT.2009.2021379 [9] Babar Z, Egilmez Z B K, Xiang L, et al. Polar codes and their quantum-domain counterparts. IEEE Commun. Surv. Tutor., 2019; 22(1): 123—155 doi: 10.1109/COMST.2019.2937923 [10] Hui D, Sandberg S, Blankenship Y, et al. Channel coding in 5G new radio: A tutorial overview and performance comparison with 4G LTE. IEEE Veh. Technol. Mag., 2018; 13(4): 60—69 doi: 10.1109/MVT.2018.2867640 [11] 3GPP TS 38.212 V15.0. 0: Multiplexing and channel coding. 2017. Available online: 3gpp.org (accessed on 25 November 2019) [12] Seidl M, Schenk A, Stierstorfer C, et al. Polar-coded modulation. IEEE Trans. Commun., 2013; 61(10): 4108—4119 doi: 10.1109/TCOMM.2013.090513.130433 [13] Mahdavifar H, El-Khamy M, Lee J, et al. Polar coding for bit-interleaved coded modulation. IEEE Trans. Veh. Technol., 2015; 65(5): 3115—3127 doi: 10.1109/TVT.2015.2443772 [14] Mori R, Tanaka T. Performance of polar codes with the construction using density evolution. IEEE Commun. Lett., 2009; 13(7): 519—521 doi: 10.1109/LCOMM.2009.090428 [15] Tal I, Vardy A. How to construct polar codes. IEEE Trans. Inf. Theory., 2013; 59(10): 6562—6582 doi: 10.1109/TIT.2013.2272694 [16] Trifonov P. Efficient design and decoding of polar codes. IEEE Trans. Commun., 2012; 60(11): 3221—3227 doi: 10.1109/TCOMM.2012.081512.110872 [17] Zhou D, Niu K, Dong C. Construction of polar codes in Rayleigh fading channel. IEEE Commun. Lett., 2019; 23(3): 402—405 doi: 10.1109/LCOMM.2019.2892453 [18] Qiao G, Xing S, Zhou F. A multi-user detection scheme based on polar code construction in downlink underwater acoustic OFDM communication system. IEEE Access, 2019; 7: 65973—65981 doi: 10.1109/ACCESS.2019.2916995 [19] 胡承昊, 台玉朋, 汪俊, 等. 基于Polar码的水声通信信源信道联合译码方法. 应用声学, 2022; 41(1): 60—69 doi: 10.11684/j.issn.1000-310X.2022.01.007 [20] 翟玉爽, 冯海泓, 李记龙. 极化码在OFDM水声通信中的应用研究. 声学技术, 2021; 40(1): 29—38 doi: 10.16300/j.cnki.1000-3630.2021.01.005 [21] Polprasert C, Ritcey J A, Stojanovic M. Capacity of OFDM systems over fading underwater acoustic channels. IEEE J. Oceanic Eng., 2011; 36(4): 514—524 doi: 10.1109/JOE.2011.2167071 [22] Clay C S, Medwin H. Acoustical oceanography: Principles and applications. New York: Wiley, 1977 [23] 尹艳玲, 乔钢, 刘凇佐, 等. 浅水时变多途信道特性分析与模型实验研究. 声学学报, 2019; 44(1): 96—105 doi: 10.15949/j.cnki.0371-0025.2019.01.011 [24] 吴喜胜, 武岩波, 朱敏, 等. 水声通信中后验符号概率密度分布及概率成形容量分析. 声学学报, 2021; 46(1): 35—45 doi: 10.15949/j.cnki.0371-0025.2021.01.004 [25] Qarabaqi P, Stojanovic M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels. IEEE J. Oceanic Eng., 2013; 38(4): 701—717 doi: 10.1109/JOE.2013.2278787 [26] Amini P, Chen R R, Farhang-Boroujeny B. Filterbank multicarrier communications for underwater acoustic channels. IEEE J. Oceanic Eng., 2015; 40(1): 115—130 doi: 10.1109/JOE.2013.2291139 [27] Socheleau F X, Laot C, Passerieux J M. Concise derivation of scattering function from channel entropy maximization. IEEE Trans. Commun., 2010; 58(11): 3098—3103 doi: 10.1109/TCOMM.2010.091310.090247 [28] Kaddouri S, Beaujean P P J, Bouvet P J, et al. Least square and trended Doppler estimation in fading channel for high-frequency underwater acoustic communications. IEEE J. Oceanic Eng., 2014; 39(1): 179—188 doi: 10.1109/JOE.2013.2282065 -
计量
- 文章访问数: 34
- 被引次数: 0