EI / SCOPUS / CSCD 收录

中文核心期刊

QIN You-guo. THE FINITE ELEMENT FORMULA OF SOUND FIELD BY THE WEIGHTED RESIDUAL METHOD[J]. ACTA ACUSTICA, 1982, 7(6): 387-391. DOI: 10.15949/j.cnki.0371-0025.1982.06.007
Citation: QIN You-guo. THE FINITE ELEMENT FORMULA OF SOUND FIELD BY THE WEIGHTED RESIDUAL METHOD[J]. ACTA ACUSTICA, 1982, 7(6): 387-391. DOI: 10.15949/j.cnki.0371-0025.1982.06.007

THE FINITE ELEMENT FORMULA OF SOUND FIELD BY THE WEIGHTED RESIDUAL METHOD

More Information
  • Received Date: November 08, 1981
  • Available Online: August 22, 2022
  • The finite element formula of sound field, in which there are sound sources and of which the boundary is non-rigid and absorbent, can be worked out by the weighted residual method. The formulae of characteristic value problem of sound field, which has been deduced using variational method[1], may be taken as a particular case.
  • Related Articles

    [1]TAO Zheng, LIU Xu, HU Bin. Finite element model updating of a rod-type ultrasonic motor based on response surface method[J]. ACTA ACUSTICA, 2017, 42(3): 305-310. DOI: 10.15949/j.cnki.0371-0025.2017.03.007
    [2]YIN Shengwen, YU Dejie, XIA Baizhan. Second-order interval perturbation finite element method for the analysis of the acoustic filed with uncertain parameters[J]. ACTA ACUSTICA, 2015, 40(5): 703-709. DOI: 10.15949/j.cnki.0371-0025.2015.05.011
    [3]XIA Baizhan, YU Dejie, YAO Lingyun. A smoothed finite element method for two-dimensional coupling acoustic fields in multi-fluid domain[J]. ACTA ACUSTICA, 2012, 37(6): 601-609. DOI: 10.15949/j.cnki.0371-0025.2012.06.015
    [4]YANG Yingchun, ZHOU Qidou, PAN Yucun. Boundary element method for sound field prediction of finite duct[J]. ACTA ACUSTICA, 2011, 36(1): 60-65. DOI: 10.15949/j.cnki.0371-0025.2011.01.003
    [5]SHEN Xiaoxiang, SHEN Yong. Investigation on absorptive material position in small rooms with finite element method[J]. ACTA ACUSTICA, 2005, 30(4): 324-328. DOI: 10.15949/j.cnki.0371-0025.2005.04.008
    [6]TAN Hongbo, ZHAO Hong, XU Haiting. Sound characteristics of the viscoelastic layer containing periodic cavities by the finite element method[J]. ACTA ACUSTICA, 2003, 28(3): 277-282. DOI: 10.15949/j.cnki.0371-0025.2003.03.015
    [7]ZHENG Min-hua, CAI Xiu-lan, CHEN Tong. FINITE ELEMENT ANALYSIS OF YONGLE BELL[J]. ACTA ACUSTICA, 1988, 13(1): 59-66. DOI: 10.15949/j.cnki.0371-0025.1988.01.009
    [8]CHEN Pei-tian. TO SOLVE THE RADIATED ACOUSTIC FIELD OF FREE-FLOODED-RING TRANSDUCER WITH SLOW WAVEGUIDE BY THE METHOD OF HELMHOLTZ INTEGRAL EQUATIONS IN THE FORM OF FINITE SURFACE ELEMENT[J]. ACTA ACUSTICA, 1987, 12(3): 218-226. DOI: 10.15949/j.cnki.0371-0025.1987.03.008
    [9]BAO Xiao-qi, XU Qi-chang. THE FINITE ELEMENT METHOD ANALYSIS OF CONCAVE FLEXTENSIONAL TRANSDUCER[J]. ACTA ACUSTICA, 1982, 7(3): 157-164. DOI: 10.15949/j.cnki.0371-0025.1982.03.004
    [10]SHEN Yao, SUN Hong-sheng. THE FINITE ELEMENT METHOD IN ENGINEERING ACOUSTICS[J]. ACTA ACUSTICA, 1981, 6(4): 249-259. DOI: 10.15949/j.cnki.0371-0025.1981.04.006

Catalog

    Article Metrics

    Article views (56) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return