EI / SCOPUS / CSCD 收录

中文核心期刊

TAN Hongbo, ZHAO Hong, XU Haiting. Sound characteristics of the viscoelastic layer containing periodic cavities by the finite element method[J]. ACTA ACUSTICA, 2003, 28(3): 277-282. DOI: 10.15949/j.cnki.0371-0025.2003.03.015
Citation: TAN Hongbo, ZHAO Hong, XU Haiting. Sound characteristics of the viscoelastic layer containing periodic cavities by the finite element method[J]. ACTA ACUSTICA, 2003, 28(3): 277-282. DOI: 10.15949/j.cnki.0371-0025.2003.03.015

Sound characteristics of the viscoelastic layer containing periodic cavities by the finite element method

More Information
  • PACS: 
    • 43.60  (声学信号处理)
    • 43.72  (语言处理与通信系统)
  • Received Date: September 25, 2001
  • Revised Date: June 13, 2002
  • Available Online: August 03, 2022
  • The finite element method is applied to analyze sound characteristics of the viscoelastic layer containing periodic cavities when it is immersed in the water or adhered to a steel flat between water and air. The results show that the reflection coefficients of the viscoelastic layer with periodic cavities are bigger than that without cavities at low frequency. The resonance of cavities can affect the sound characteristics. Moreover, numerical results are obtained for the viscoelastic layer with spherical, cylindrical or cone-shaped cavities and the modes of their vibrations are analyzed.
  • Related Articles

    [1]YIN Shengwen, YU Dejie, XIA Baizhan. Second-order interval perturbation finite element method for the analysis of the acoustic filed with uncertain parameters[J]. ACTA ACUSTICA, 2015, 40(5): 703-709. DOI: 10.15949/j.cnki.0371-0025.2015.05.011
    [2]LI Hong, LUO Ying, XU Boqiang, XU Guidong, XU Chenguang. Spectral finite element modeling of characteristics of guided waves propagation in orthotropic viscoelastic material[J]. ACTA ACUSTICA, 2013, 38(3): 319-325. DOI: 10.15949/j.cnki.0371-0025.2013.03.008
    [3]XU Guidong, XU Boqiang, XU Chenguang, CHEN Lijuan. Spectral finite element method analysis of dispersion characteristics of guided wave in anisotropic composite plates[J]. ACTA ACUSTICA, 2012, 37(5): 521-526. DOI: 10.15949/j.cnki.0371-0025.2012.05.007
    [4]LI Yifeng, LI Guofeng, WANG Yun. Application of convolution perfectly matched layer in finite element method calculation for 2D acoustic wave[J]. ACTA ACUSTICA, 2010, 35(6): 601-607. DOI: 10.15949/j.cnki.0371-0025.2010.06.002
    [5]SHEN Xiaoxiang, SHEN Yong. Investigation on absorptive material position in small rooms with finite element method[J]. ACTA ACUSTICA, 2005, 30(4): 324-328. DOI: 10.15949/j.cnki.0371-0025.2005.04.008
    [6]XIAO Sunsheng, ZHANG Jinduo, LUAN Guidong. Analysis of the acceleration response of PVDF piezoelectric polymer hydrophone using finite element method[J]. ACTA ACUSTICA, 1997, 22(4): 338-344. DOI: 10.15949/j.cnki.0371-0025.1997.04.008
    [7]FENG Le-ping. ANALYSIS OF EFFECTIVE DEPTH OF COMBUSTION CHAMBER'S ACOUSTIC CAVITY USING FINITE ELEMENT METHOD[J]. ACTA ACUSTICA, 1987, 12(2): 104-112. DOI: 10.15949/j.cnki.0371-0025.1987.02.003
    [8]QIN You-guo. THE FINITE ELEMENT FORMULA OF SOUND FIELD BY THE WEIGHTED RESIDUAL METHOD[J]. ACTA ACUSTICA, 1982, 7(6): 387-391. DOI: 10.15949/j.cnki.0371-0025.1982.06.007
    [9]BAO Xiao-qi, XU Qi-chang. THE FINITE ELEMENT METHOD ANALYSIS OF CONCAVE FLEXTENSIONAL TRANSDUCER[J]. ACTA ACUSTICA, 1982, 7(3): 157-164. DOI: 10.15949/j.cnki.0371-0025.1982.03.004
    [10]SHEN Yao, SUN Hong-sheng. THE FINITE ELEMENT METHOD IN ENGINEERING ACOUSTICS[J]. ACTA ACUSTICA, 1981, 6(4): 249-259. DOI: 10.15949/j.cnki.0371-0025.1981.04.006

Catalog

    Article Metrics

    Article views (41) PDF downloads (12) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return