EI / SCOPUS / CSCD 收录

中文核心期刊

KANG Yongguo, SHUANG Zhiwei, TAO Jianhua, ZHANG Wei. A hybrid method to convert acoustic features for voice conversion[J]. ACTA ACUSTICA, 2006, 31(6): 555-562. DOI: 10.15949/j.cnki.0371-0025.2006.06.014
Citation: KANG Yongguo, SHUANG Zhiwei, TAO Jianhua, ZHANG Wei. A hybrid method to convert acoustic features for voice conversion[J]. ACTA ACUSTICA, 2006, 31(6): 555-562. DOI: 10.15949/j.cnki.0371-0025.2006.06.014

A hybrid method to convert acoustic features for voice conversion

More Information
  • PACS: 
    • 43.30  (Underwater sound)
    • 43.60  (Acoustic signal processing)
    • 43.50  (Noise: its effects and control)
  • Received Date: July 18, 2005
  • Revised Date: December 01, 2005
  • Available Online: July 20, 2022
  • The overly smoothing problem of GMM mapping method is first analyzed, and lost spectral details arising from improper covariance matrixes are considered as the main causation. Thus a hybrid mapping method, which converts envelope-subtracted spectral details by GMM and phone-tied codebook mapping method, is proposed. GMM training in this paper is performed in each phonetic data for faster GMM training. Objective evaluations based on performance indices show that the performance of proposed training method with phonetic information averagely improves 12.87% with tradition GMM training method, and proposed mapping method can improve 27.13% with optimal parameters comparing traditional GMM mapping algorithm with new training method.
  • Related Articles

    [1]CHEN Lele, ZHANG Xiongwei, SUN Meng, ZHANG Xingyu. Noise robust voice conversion with the fusion of Mel-spectrum enhancement and feature disentanglement[J]. ACTA ACUSTICA, 2023, 48(5): 1070-1080. DOI: 10.12395/0371-0025.2022093
    [2]ZHANG Shilei, JIAN Zhihua, SUN Minhong, ZHONG Hua, LIU Erxiao. A noise robust voice conversion algorithm based on joint dictionary optimization[J]. ACTA ACUSTICA, 2019, 44(6): 1074-1082. DOI: 10.15949/j.cnki.0371-0025.2019.06.014
    [3]GU Dong, JIAN Zhihua. An algorithm for voice conversion with limited corpus[J]. ACTA ACUSTICA, 2018, 43(5): 864-872. DOI: 10.15949/j.cnki.0371-0025.2018.05.018
    [4]HUI Lin, YU Yibiao. Voice conversion of different ages using universal background model groups of short-time spectra and prosodic features[J]. ACTA ACUSTICA, 2017, 42(6): 762-768. DOI: 10.15949/j.cnki.0371-0025.2017.06.017
    [5]LI Na, ZENG Xiangyang, QIAO Yu, LI Zhifeng. Voice conversion using bayesian analysis and dynamic kernel features[J]. ACTA ACUSTICA, 2015, 40(3): 455-461. DOI: 10.15949/j.cnki.0371-0025.2015.03.013
    [6]LI Yangchun, YU Yibiao. Voice conversion using structured Gaussian mixture model in eigen space[J]. ACTA ACUSTICA, 2015, 40(1): 12-19. DOI: 10.15949/j.cnki.0371-0025.2015.01.002
    [7]LI Xian, WU Jun, WANG Zengfu. Prosody conversion for mandarin emotional voice conversion[J]. ACTA ACUSTICA, 2014, 39(4): 509-516. DOI: 10.15949/j.cnki.0371-0025.2014.04.015
    [8]JIAN Zhihua, WANG Xiangwen. A modified algorithm for voice conversion using compressed sensing[J]. ACTA ACUSTICA, 2014, 39(3): 400-406. DOI: 10.15949/j.cnki.0371-0025.2014.03.016
    [9]JIE Weichao, ZHANG Linghua. Voice conversion based on self organization clustering and modified particle swarm optimization[J]. ACTA ACUSTICA, 2014, 39(1): 130-136. DOI: 10.15949/j.cnki.0371-0025.2014.01.014
    [10]YU Yibiao, CENG Daojian, JIANG Ying. Voice conversion based on isolated speaker model[J]. ACTA ACUSTICA, 2012, 37(3): 346-352. DOI: 10.15949/j.cnki.0371-0025.2012.03.011

Catalog

    Article Metrics

    Article views (34) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return