EI / SCOPUS / CSCD 收录

中文核心期刊

HUANG Jianjun, ZHANG Xiongwei, ZHANG Yafei, ZOU Xia. Single channel speech enhancement via time-frequency dictionary learning[J]. ACTA ACUSTICA, 2012, 37(5): 539-547. DOI: 10.15949/j.cnki.0371-0025.2012.05.010
Citation: HUANG Jianjun, ZHANG Xiongwei, ZHANG Yafei, ZOU Xia. Single channel speech enhancement via time-frequency dictionary learning[J]. ACTA ACUSTICA, 2012, 37(5): 539-547. DOI: 10.15949/j.cnki.0371-0025.2012.05.010

Single channel speech enhancement via time-frequency dictionary learning

More Information
  • PACS: 
    • 43.72  (Speech processing and communication systems)
  • Received Date: June 01, 2011
  • Revised Date: August 23, 2011
  • Available Online: June 22, 2022
  • A time-frequency dictionary learning approach is proposed to enhance speech contaminated by additive non- stationary noise. In this approach, a time-frequency dictionary is used for noise process modeling and incorporated into the convolutive nonnegative matrix factorization framework. The update rules for speech and noise time-varying gains and speech time-frequency dictionary are derived by precomputing the noise dictionary. The magnitude spectrogram of speech is estimated using convolution operation between the learned speech dictionary and the time-varying gains. Finally, noise is removed via binary time-frequency masking. Experiments indicate that the scheme proposed in this paper gives better enhancement results in terms of quality measures of speech. The proposed algorithm outperforms the multiband spectra subtraction and the non-negative sparse coding based noise reduction algorithm in nonstationary noise conditions.
  • Related Articles

    [1]LIU Zuozhen, WU Chou, LI Ta, ZHAO Qingwei. Keyword-dependent monaural speech enhancement for open-vocabulary keyword spotting[J]. ACTA ACUSTICA, 2023, 48(2): 415-424. DOI: 10.15949/j.cnki.0371-0025.2023.02.012
    [2]FAN Junyi, YANG Jibin, ZHANG Xiongwei, ZHENG Changyan. Monaural speech enhancement using U-net fused with multi-head self-attention[J]. ACTA ACUSTICA, 2022, 47(6): 703-716. DOI: 10.15949/j.cnki.0371-0025.2022.06.007
    [3]BO Haojun, ZHANG Tianqi, LIU Jianxing, YE Shaopeng. Speech enhancement combining accurate ratio masking and deep neural network[J]. ACTA ACUSTICA, 2022, 47(3): 394-404. DOI: 10.15949/j.cnki.0371-0025.2022.03.009
    [4]ZHANG Xiaoyan, ZHANG Tianqi, GE Wanying, BAI Yangliu. Monaural speech enhancement combining deep neural network and convex optimation[J]. ACTA ACUSTICA, 2021, 46(3): 471-480. DOI: 10.15949/j.cnki.0371-0025.2021.03.019
    [5]NIE Lingzi, CHEN Xueqin, ZHAO Heming. Speech enhancement method combining amplitude spectrum and power spectrum dictionary[J]. ACTA ACUSTICA, 2021, 46(1): 81-91. DOI: 10.15949/j.cnki.0371-0025.2021.01.008
    [6]SHI Wenhua, ZHANG Xiongwei, ZOU Xia, SUN Meng, LI Li. Time frequency masking based speech enhancement using deep encoder-decoder neural network[J]. ACTA ACUSTICA, 2020, 45(3): 299-307. DOI: 10.15949/j.cnki.0371-0025.2020.03.002
    [7]LI Xu, WANG Ziteng, WANG Xiaofei, FU Qiang, YAN Yonghong. Single-channel speech enhancement based on gender-related deep neural networks and non-negative matrix factorization models[J]. ACTA ACUSTICA, 2019, 44(2): 221-230. DOI: 10.15949/j.cnki.0371-0025.2019.02.009
    [8]LU Cheng, TIAN Meng, ZHOU Jian, WANG Huabin, TAO Liang. A single-channel speech enhancement approach using convolutive non-negative matrix factorization with L1/2 sparse constraint[J]. ACTA ACUSTICA, 2017, 42(3): 377-384. DOI: 10.15949/j.cnki.0371-0025.2017.03.016
    [9]LI Yinan, ZHANG Xiongwei, JIA Chong, CHEN Liang, ZENG Li. Unsupervised real-time single channel speech enhancement with sparse low-rank and noise model[J]. ACTA ACUSTICA, 2015, 40(4): 607-614. DOI: 10.15949/j.cnki.0371-0025.2015.04.014
    [10]YANG Lin, ZHANG Jianping, YAN Yonghong. Effects of single-channel speech enhancement algorithms on Chinese Putonghua intelligibility[J]. ACTA ACUSTICA, 2010, 35(2): 248-253. DOI: 10.15949/j.cnki.0371-0025.2010.02.025

Catalog

    Article Metrics

    Article views (38) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return