EI / SCOPUS / CSCD 收录

中文核心期刊

LIANG Yuquan, ZHOU Shihong, GONG Zaixiao, QI Yubo, NIU Haiqiang, WANG Yu. Normal mode separation based on compressive sensing with a horizontal array[J]. ACTA ACUSTICA, 2020, 45(5): 609-624. DOI: 10.15949/j.cnki.0371-0025.2020.05.001
Citation: LIANG Yuquan, ZHOU Shihong, GONG Zaixiao, QI Yubo, NIU Haiqiang, WANG Yu. Normal mode separation based on compressive sensing with a horizontal array[J]. ACTA ACUSTICA, 2020, 45(5): 609-624. DOI: 10.15949/j.cnki.0371-0025.2020.05.001

Normal mode separation based on compressive sensing with a horizontal array

More Information
  • PACS: 
  • Received Date: September 11, 2019
  • Revised Date: November 11, 2019
  • Available Online: June 26, 2022
  • According to the issue that traditional beamforming has low resolution and warping modal filtering is not applicable to arbitrary complex source signal,a normal mode separation method based on compressive sensing with a horizontal array is proposed.Taking advantage of compressive sensing,which has high resolution ability in azimuth estimation,normal modes can be separated in beam domain.That is to estimate the azimuth spectral distribution by compressive sensing,separate each normal mode on the plane of frequency and azimuth,and finally recover the waveform by inverse Fourier transformation.A pseudo-random as well as impulse sound source signal with bandwidth of 20-200 Hz is used to simulate sound field signal received by a horizontal linear array,whose aperture is 1 km and element space is 10 m.And then apply the method proposed above to separate normal modes and compute the correlation coefficients with the theoretical ones.The correlation coefficient is between 0.97-1.0,which verify the compressive sensing normal mode separation method is applicable to any form of sound source signal.Experiment data of air-gun signals received by the seafloor-deployed 28 element horizontal line array at the North Yellow Sea in 2011,accompanied with synthetic aperture method to get a 1 km array,is used for compressive sensing normal mode separation.The correlation coefficient of the first 5 normal modes separated with warping filtering is between 0.82-0.93.Simulation and experiment verify the effectiveness of the proposed method.
  • Related Articles

    [1]WANG Ran, BAI Yue, YU Liang, DONG Guangming. Bayesian compressive sensing for identifying tonal acoustic modes of fan noise in the duct[J]. ACTA ACUSTICA, 2025, 50(1): 187-200. DOI: 10.12395/0371-0025.2023116
    [2]LIANG Yuquan, ZHOU Shihong, GONG Zaixiao, WANG Yu. Broadband passive aperture extension based on non-uniform horizontal array in shallow water[J]. ACTA ACUSTICA, 2021, 46(4): 481-496. DOI: 10.15949/j.cnki.0371-0025.2021.04.001
    [3]SONG Qiyan, MA Xiaochuan, ZHANG Shuhao, CHEN Liheng. Estimation of multipath parameters of underwater acoustic signals based on weighted compressed sensing with dictionary singular value decomposition[J]. ACTA ACUSTICA, 2020, 45(4): 515-526. DOI: 10.15949/j.cnki.0371-0025.2020.04.008
    [4]ZHOU Mingyang, GUO Lianghao, YAN Chao. Improved Bayesian compressive sensing-based direction of arrival estimation[J]. ACTA ACUSTICA, 2019, 44(6): 961-969. DOI: 10.15949/j.cnki.0371-0025.2019.06.002
    [5]KANG Chunyu, LI Wenzhe, XIA Zhijun, LI Jun, LI Kunpeng, YAN Shaoguang. Direction of arrival estimation for underwater acoustic target based on compressed sensing after blind reconstruction of array signal in frequency domain[J]. ACTA ACUSTICA, 2019, 44(6): 951-960. DOI: 10.15949/j.cnki.0371-0025.2019.06.001
    [6]BAI Zhiliang, CHEN Shili, JIA Lecheng, CENG Zhoumo. Ultrasonic phased array signal compressed sensing in defect detection[J]. ACTA ACUSTICA, 2019, 44(5): 807-817. DOI: 10.15949/j.cnki.0371-0025.2019.05.001
    [7]KANG Chunyu, LI Qianyan, ZHANG Xinhua, LI Jun. Direction of arrival estimation and signal recovery based on single snapshot compressed sensing in frequency domain[J]. ACTA ACUSTICA, 2016, 41(2): 174-180. DOI: 10.15949/j.cnki.0371-0025.2016.02.004
    [8]JIAN Zhihua, WANG Xiangwen. A modified algorithm for voice conversion using compressed sensing[J]. ACTA ACUSTICA, 2014, 39(3): 400-406. DOI: 10.15949/j.cnki.0371-0025.2014.03.016
    [9]CENG Li, ZHANG Xiongwei, CHEN Liang, YANG Jibin, HUANG Jianjun. Compressed speech signal sensing with K-L incoherent dictionary based on segment MP[J]. ACTA ACUSTICA, 2013, 38(4): 493-500. DOI: 10.15949/j.cnki.0371-0025.2013.04.013
    [10]HUANG Yong, LI Yu, ZHU Peisheng, LI Zheng, HUANG Haining. Normal mode wave-number estimation using horizontal synthetic aperture array[J]. ACTA ACUSTICA, 2009, 34(3): 229-233. DOI: 10.15949/j.cnki.0371-0025.2009.03.004
  • Cited by

    Periodical cited type(7)

    1. 杜思奇,韩东,李思迪. 一种浅海连续声信号简正波分离方法. 舰船科学技术. 2025(08): 107-113 .
    2. GAO Siyu,LI Weilu,ZHANG Yinquan,LI Xiaolei,WANG Ning. Extraction of Acoustic Normal Mode Depth Functions Using Range-Difference Method with Vertical Linear Array Data. Journal of Ocean University of China. 2024(04): 871-882 .
    3. ZHAO Dongdong,LI Fuzeng,CHEN Peng,MAO Weibo,GUO Xinxin. Structural optimization design on the arc receiver array of forward-looking sonar. Chinese Journal of Acoustics. 2023(01): 40-57 .
    4. 路达,段睿,杨坤德. 基于张量分解的简正波模态参数估计. 声学学报. 2023(04): 743-760 . 本站查看
    5. 赵冬冬,李付增,陈朋,毛威波,郭新新. 前视声呐圆弧接收阵列结构优化设计. 声学学报. 2022(03): 329-338 . 本站查看
    6. 陈亚伟,邢孟道,王俊,杨予昊. 一种基于大孔径水平阵的浅海声源被动测距方法. 电子与信息学报. 2022(12): 4125-4133 .
    7. 梁玉权,周士弘,宫在晓. 浅海低频长线阵声源方位估计. 应用声学. 2021(06): 821-827 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (133) PDF downloads (33) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return