EI / SCOPUS / CSCD 收录

中文核心期刊

SUN Dajun, HOU Kaiyang, TENG Tingting, MEI Jidan, LIU Huimin, LI Yecheng. Small moving target interference suppression detection method in space-time Doppler frequency shift domain[J]. ACTA ACUSTICA, 2022, 47(2): 161-174. DOI: 10.15949/j.cnki.0371-0025.2022.02.006
Citation: SUN Dajun, HOU Kaiyang, TENG Tingting, MEI Jidan, LIU Huimin, LI Yecheng. Small moving target interference suppression detection method in space-time Doppler frequency shift domain[J]. ACTA ACUSTICA, 2022, 47(2): 161-174. DOI: 10.15949/j.cnki.0371-0025.2022.02.006

Small moving target interference suppression detection method in space-time Doppler frequency shift domain

More Information
  • PACS: 
    • 43.58  (Acoustical measurements and instrumentation)
    • 43.30  (Underwater sound)
    • 43.60  (Acoustic signal processing)
  • Received Date: July 22, 2021
  • Revised Date: December 01, 2021
  • Available Online: June 28, 2022
  • Published Date: March 14, 2022
  • Active sonar can separate clutter,reverberation and moving targets in the Doppler frequency shift domain by using Doppler sensitive signals,but time leakage and Doppler leakage of strong interference will overwhelm weak targets at low signal-to-interference ratio.Therefore,a small moving target interference suppression detection method based on adaptive Least Mean Square(LMS)algorithm and Wideband Ambiguity Function(WAF)is proposed.Firstly,the adaptive notch filter based on LMS is used to suppress interference in the spatial Doppler frequency shift domain,and then WAF is used to detect targets in the fast-time Doppler frequency shift domain.Numerical simulation and pool experiment are carried out.Simulation results demonstrate that the proposed method can effectively suppress strong interference,and accurately estimate the target delay and Doppler frequency shift.It can obtain about 13 dB interference suppression ability in the experiment.Moreover,it can tolerate interference fluctuation with normalized amplitude fluctuation variance less than 0.5,and improves the active detection ability to small moving targets.
  • Related Articles

    [1]YANG Yang, GUO Lianghao, GONG Zaixiao, LIU Jianjun. Phase-aware underwater platform background broadband noise interference suppression[J]. ACTA ACUSTICA, 2024, 49(3): 492-500. DOI: 10.12395/0371-0025.2023025
    [2]LI Xuan, MA Xiaochuan, HAO Chengpeng, YAN Shefeng. Wideband reverberation suppression in beams domain by utilizing angular distribution features[J]. ACTA ACUSTICA, 2018, 43(5): 738-744. DOI: 10.15949/j.cnki.0371-0025.2018.05.002
    [3]WANG Yuliang, WU Wendao, LI Ping, MENG Xiaohui, CHEN Le. Research on minimum mean square error demodulation algorithm for ultrasound color flow imaging[J]. ACTA ACUSTICA, 2014, 39(2): 264-270. DOI: 10.15949/j.cnki.0371-0025.2014.02.014
    [4]YI Feng, SUN Chao. Matched-mode beamforming based on total least square algorithm[J]. ACTA ACUSTICA, 2013, 38(1): 35-41. DOI: 10.15949/j.cnki.0371-0025.2013.01.005
    [5]MA Haitao, PENG Dongli, WANG Hualiang, XU Weijie. An improvement method to the ambiguous velocity in broad-band Doppler technique[J]. ACTA ACUSTICA, 2011, 36(2): 226-230. DOI: 10.15949/j.cnki.0371-0025.2011.02.004
    [6]WANG Fupo, LI Shuqiu, LI Yu, HUANG Haining. Research on a conjugate cancelling method of port and starboard ambiguity for twin-line array[J]. ACTA ACUSTICA, 2009, 34(2): 131-135. DOI: 10.15949/j.cnki.0371-0025.2009.02.005
    [7]SHAO Zhihui, WANG Haibin, WU Lixin, ZHANG Renhe. The application of inverse Doppler shift algorithm based on ZoomFFT to underwater communication[J]. ACTA ACUSTICA, 2005, 30(5): 420-426. DOI: 10.15949/j.cnki.0371-0025.2005.05.006
    [8]LI Yingxiang, XIAO Xianci. Multi-LFM signals time frequency representation basing on recursive filtering Radon-Ambiguity transform[J]. ACTA ACUSTICA, 2004, 29(6): 557-561. DOI: 10.15949/j.cnki.0371-0025.2004.06.012
    [9]ZHANG Xiaofeng, ZHAO Junwei, MA Zhongcheng, LI Guijuan, WANG Rongqing. Research on localization algorithm with weighted least squares estimate for bistatic sonar[J]. ACTA ACUSTICA, 2004, 29(3): 283-286. DOI: 10.15949/j.cnki.0371-0025.2004.03.017
    [10]XU Zhen-yong. SPACE-TIME CORRELATION FUNCTION OF A NOISE-FIELD[J]. ACTA ACUSTICA, 1966, 3(1): 34-39. DOI: 10.15949/j.cnki.0371-0025.1966.01.006
  • Cited by

    Periodical cited type(8)

    1. 张旭. 基于声学测量的水下高动态航行参数估计. 兵工学报. 2025(05): 276-285 .
    2. 孙旭,李然威,周利生,马永峥,景杨. 利用组合双曲调频信号的目标径向速度测量与测距去偏. 声学学报. 2024(05): 979-989 . 本站查看
    3. 刘恒,陈逸楠,葛益华,范洋,丘仲锋. 一种基于声层析的河道实时流速测量系统设计与实验. 传感技术学报. 2024(11): 2003-2009 .
    4. 陈科睿,李然威,孙旭. 含径速观测的无迹卡尔曼滤波跟踪算法. 声学与电子工程. 2024(04): 11-14 .
    5. 许彦伟,薛勐,刘明刚,郝程鹏,赵莉,王佳欢,周正春. 多无人水下航行器协同探测声呐宽带波形设计与性能分析. 电子与信息学报. 2023(10): 3796-3804 .
    6. 赵显文,陈洲,王正伟,刘志刚,胡鹏鹏,王梦馨. 复杂海洋环境下运动目标回波信号建模及仿真. 移动通信. 2022(07): 82-87 .
    7. 刘方,侯超强,翟涛涛,滕繁荣,刘永斌. 运动声源多普勒畸变信号自适应校正方法. 声学学报. 2022(06): 820-831 . 本站查看
    8. 高怡心,谢心怡,许世杰,李光明,黄豪彩. 基于沿海声层析技术的水下目标探测技术. 兵工自动化. 2022(12): 30-34 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (598) PDF downloads (189) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return