EI / SCOPUS / CSCD 收录

中文核心期刊

LIU Feng, WANG Yuxiong, CHEN Huifang, XIE Lei. Cooperative localization methods of autonomous underwater vehicle swarm integrated with inverted ultrashort baseline[J]. ACTA ACUSTICA, 2023, 48(4): 687-698. DOI: 10.15949/j.cnki.0371-0025.2023.04.029
Citation: LIU Feng, WANG Yuxiong, CHEN Huifang, XIE Lei. Cooperative localization methods of autonomous underwater vehicle swarm integrated with inverted ultrashort baseline[J]. ACTA ACUSTICA, 2023, 48(4): 687-698. DOI: 10.15949/j.cnki.0371-0025.2023.04.029

Cooperative localization methods of autonomous underwater vehicle swarm integrated with inverted ultrashort baseline

More Information
  • PACS: 
    • 43.60  (Acoustic signal processing)
  • Received Date: December 30, 2022
  • Revised Date: March 14, 2023
  • Available Online: July 12, 2023
  • A cooperative localization factor graph for the autonomous underwater vehicle (AUV) swarm integrated with inverted ultrashort baseline (iUSBL) system is constructed. Two cooperative localization methods of slave-AUV in an AUV swarm are proposed, namely the extended Kalman filter (EKF)-based cooperative localization method and particle belief propagation (BP)-based cooperative localization method, where the effect of the leader-AUV’s positioning error is mitigated. For the EKF-based cooperative localization method, the state of the slave AUV is reconstructed with the positioning information of leader-AUV to achieve cooperative localization. In the particle-BP-based cooperative localization method, the measurement particles are generated to realize cooperative localization. The proposed methods can solve the problem of poor real-time of traditional methods, and only require one-way acoustic positioning transmission measurement to realize the localization of the slave-AUV. Simulation results show that the two proposed cooperative localization methods of slave-AUV in an AUV swarm work well for AUVs with different localization abilities. Compared with the dead-reckoning method, the localization errors of two proposed methods are reduced by more than 80%, and the positioning error accumulation is effectively suppressed. Furthermore, the proposed cooperative localization methods can operate normally under a high packet loss rate of the underwater acoustic channel, and the localization performance is not significantly degraded.

  • [1]
    谢志华, 蒋丞, 吴俊超, 等. 水下目标多平台协同定位和跟踪方法. 声学学报, 2021; 46(6): 1028—1038 DOI: 10.15949/j.cnki.0371-0025.2021.06.022
    [2]
    柴洪洲, 杜祯强, 向民志, 等. 水下UUVs集群协同定位技术发展现状及趋势. 测绘通报, 2022(10): 62—67, 92 DOI: 10.13474/j.cnki.11-2246.2022.0295
    [3]
    Bahr A, Leonard J J, Fallon M F. Cooperative localization for autonomous underwater vehicles. Int. J. Rob. Res., 2009; 28(6): 714—728 DOI: 10.1177/0278364908100561
    [4]
    Yang Y, Xiao Y, Li T. A survey of autonomous underwater vehicle formation: performance, formation control, and communication capability. IEEE Commun. Surv. Tutorials, 2021; 23(2): 815—841 DOI: 10.1109/COMST.2021.3059998
    [5]
    简杰, 朱志宇. 基于加权信息增益的并行融合AUV协同定位方法. 中国舰船研究, 2022; 17(4): 79—91 DOI: 10.19693/j.issn.1673-3185.02434
    [6]
    Wu Y, Ta X, Xiao R, et al. Survey of underwater robot positioning navigation. Appl. Ocean Res., 2019; 90: 101845 DOI: 10.1016/j.apor.2019.06.002
    [7]
    Mu X, He B, Wu S, et al. A practical INS/GPS/DVL/PS integrated navigation algorithm and its application on autonomous underwater vehicle. Appl. Ocean Res., 2021; 106: 102441 DOI: 10.1016/j.apor.2020.102441
    [8]
    阮朗, 李广侠, 吕晶, 等. 一种基于分簇的集群协同定位系统. 南京邮电大学学报(自然科学版), 2022; 42(2): 31—41 DOI: 10.14132/j.cnki.1673-5439.2022.02.004
    [9]
    Das B, Subudhi B, Pati B B. Cooperative formation control of autonomous underwater vehicles: An overview. Int. J. Autom. Comput., 2016; 13(3): 199—225 DOI: 10.1007/s11633-016-1004-4
    [10]
    Vaganay J, Leonard J J, Curcio J A, et al. Experimental validation of the moving long base-line navigation concept. IEEE/OES Autonomous Underwater Vehicles. Sebasco, ME, USA, 2004: 59—65
    [11]
    Li Q, Ben Y, Naqvi S M, et al. Robust student's t-based cooperative navigation for autonomous underwater vehicles. IEEE Trans. Instrum. Meas., 2018; 67(8): 1762—1777 DOI: 10.1109/TIM.2018.2809139
    [12]
    Gao W, Yang J, Liu J, et al. Moving horizon estimation for cooperative localisation with communication delay. J. Navig., 2015; 68(3): 493—510 DOI: 10.1017/S037346331400085X
    [13]
    Webster S E, Walls J M, Whitcomb L L, et al. Decentralized extended information filter for single-beacon cooperative acoustic navigation: Theory and experiments. IEEE Trans. Rob., 2013; 29(4): 957—974 DOI: 10.1109/TRO.2013.2252857
    [14]
    杜祯强, 柴洪洲, 向民志, 等. UUVs集群协同定位的分散式增广信息滤波方法. 测绘学报, 2022; 51(2): 182—191 DOI: 10.11947/j.AGCS.2022.20210144
    [15]
    Luo Q, Shao Y, Li J, et al. A multi-AUV cooperative navigation method based on the augmented adaptive embedded cubature Kalman filter algorithm. Neural. Comput. Appl., 2022; 34: 18975—18992 DOI: 10.1007/s00521-022-07450-8
    [16]
    Fan Y, Zhang Y, Wang G, et al. Maximum correntropy based unscented particle filter for cooperative navigation with heavy-tailed measurement noises. Sensors, 2018; 18(10): 3183 DOI: 10.3390/s18103183
    [17]
    何桂萍, 王正伟, 陈洲. 基于自适应残差加权的AUV集群分布式协同定位算法. 舰船科学技术, 2022; 44(18): 101—105,189 DOI: 10.3404/j.issn.1672-7649.2022.18.020
    [18]
    Sharma R, Beard R W, Taylor C N, et al. Graph-based observability analysis of bearing-only cooperative localization. IEEE Trans. Rob., 2011; 28(1): 522—529 DOI: 10.1109/TRO.2011.2172699
    [19]
    Ben Y, Sun Y, Li Q, et al. A novel cooperative navigation algorithm based on factor graph with cycles for AUVs. Ocean Eng., 2021; 241: 110024 DOI: 10.1016/j.oceaneng.2021.110024
    [20]
    Tang C, Yu B, Zhang L, et al. Factor graph weight particles aided distributed underwater cooperative positioning algorithm. Telecommun. Syst., 2022; 79(2): 181—191 DOI: 10.1007/s11235-021-00830-w
    [21]
    南德, 李朝晖. 移动平台超短基线阵实现水下目标高精度定位. 声学学报, 2019; 44(4): 534—544 DOI: 10.15949/j.cnki.0371-0025.2019.04.014
    [22]
    Sun D, Gu J, Han Y, et al. Inverted ultra-short baseline signal design for multi-AUV navigation. Appl. Acoust., 2019; 150: 5—13 DOI: 10.1016/j.apacoust.2019.01.033
    [23]
    李瑨瑶, 王海斌, 徐鹏, 等. 联合方位−径向速度的粒子滤波目标运动分析. 声学学报, 2019; 44(4): 523—533 DOI: 10.15949/j.cnki.0371-0025.2019.04.013
  • Related Articles

    [1]LI Yue, MA Xiaochuan, LIU Yu, WANG Lei, LI Xuan, WEI Runyu. Tracking model of maneuvering target based on recurrent neural network in non-equal sound speed channel[J]. ACTA ACUSTICA, 2021, 46(6): 1013-1027. DOI: 10.15949/j.cnki.0371-0025.2021.06.021
    [2]PANG Lichen, HU Tao, FU Delong, GUO Shengming, MA Li. Performances of the ensemble Kalman filter on the tracking of time-evolving sound speed profiles[J]. ACTA ACUSTICA, 2020, 45(2): 176-188. DOI: 10.15949/j.cnki.0371-0025.2020.02.004
    [3]DONG Ge, CAO Zheng, GUO Lianghao, XU Peng, YAN Chao. A modified bearings-only target motion analysis method based on frequency β-warping transform in shallow water[J]. ACTA ACUSTICA, 2019, 44(4): 513-522. DOI: 10.15949/j.cnki.0371-0025.2019.04.012
    [4]JIANG Weihua, ZHENG Siyuan, TONG Feng, LI Bin. Dynamic compressed sensing estimation of time varying underwater acoustic channel[J]. ACTA ACUSTICA, 2019, 44(3): 360-368. DOI: 10.15949/j.cnki.0371-0025.2019.03.011
    [5]XU Peng, GUO Lianghao, YAN Chao, ZHOU Mingyang. Target motion analysis method using bearing and radial velocity in shallow water[J]. ACTA ACUSTICA, 2018, 43(3): 323-333. DOI: 10.15949/j.cnki.0371-0025.2018.03.007
    [6]GUO Xin, GE Feng-xiang, GUO Liang-hao. Improved adaptive Kalman filtering and its application in acoustic maneuvering target tracking[J]. ACTA ACUSTICA, 2011, 36(6): 611-618. DOI: 10.15949/j.cnki.0371-0025.2011.06.002
    [7]HU Youfeng, SUN Jincai. Study of underwater passive Motion Target Analysis (TMA) in revise extend Kalman filter[J]. ACTA ACUSTICA, 2002, 27(5): 449-454. DOI: 10.15949/j.cnki.0371-0025.2002.05.013
    [8]SHEN Ya-qiang, CHENG Zhong-wen. A speech enhancement method based on Kalman filtering[J]. ACTA ACUSTICA, 1994, 19(3): 227-233. DOI: 10.15949/j.cnki.0371-0025.1994.03.009
    [9]WU Guoqing, QIAN Donghong, ZHOU Gang. Chi-square test in adaptive Kalman filter of passive tracking[J]. ACTA ACUSTICA, 1993, 18(5): 321-329. DOI: 10.15949/j.cnki.0371-0025.1993.05.001
    [10]WU Guo-qing. EXTENDED KALMAN FILTER FOR PASSIVE LOCALIZATION[J]. ACTA ACUSTICA, 1987, 12(6): 450-459. DOI: 10.15949/j.cnki.0371-0025.1987.06.005
  • Cited by

    Periodical cited type(0)

    Other cited types(4)

Catalog

    Article Metrics

    Article views (206) PDF downloads (40) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return