EI / SCOPUS / CSCD 收录

中文核心期刊

WANG Ran, WANG Guangzhe, ZHANG Chenyu, GUO Qixin, ZHANG Yongli, YU Liang, GAO Yuan, CHEN Nuo. Gaussian mixture model fitting and suppression of towed array flow noise[J]. ACTA ACUSTICA, 2024, 49(5): 1030-1040. DOI: 10.12395/0371-0025.2023033
Citation: WANG Ran, WANG Guangzhe, ZHANG Chenyu, GUO Qixin, ZHANG Yongli, YU Liang, GAO Yuan, CHEN Nuo. Gaussian mixture model fitting and suppression of towed array flow noise[J]. ACTA ACUSTICA, 2024, 49(5): 1030-1040. DOI: 10.12395/0371-0025.2023033

Gaussian mixture model fitting and suppression of towed array flow noise

More Information
  • PACS: 
      43.60,43.30,43.50
  • Received Date: February 28, 2023
  • Revised Date: May 25, 2023
  • Aiming at the problem that it is difficult to accurately model and suppress the towed array flow noise caused by the pressure fluctuation in the turbulent boundary layer, this paper analyzes the generation mechanism of the towed array flow noise and the statistical properties of the noise. A hybrid Gaussian model modelling method is developed for the non-Gaussian distributed towed array flow noise, and a low-rank model of the acoustic source signal in the multi-channel towed array is established. The parameters in the model of the flow noise and the acoustic source signal are solved by the expectation-maximization algorithm, which ultimately realizes the separation of the flow noise and acoustic source signal in the received signal of the hydrophone. The results of the flow noise suppression and target orientation estimation of the actual lake test data show that the maximum side-valve level suppression reaches 8−10 dB without affecting the localization results.

  • [1]
    Corcos G M. The structure of the turbulent pressure field in boundary layer flows. J. Fluid Mech., 1964; 18: 353−378 DOI: 10.1017/s002211206400026x
    [2]
    Carpenter A L, Kewley D J. Investigation of low wavenumber turbulent boundary layer pressure fluctuations on long flexible cylinders. The Eighth Australasian Fluid Mechanics Conference, NSW, Australia, 1983
    [3]
    Lindemann O A. Influence of material properties on low wave-number turbulent boundary layer noise in towed arrays. U. S. Nav. Underwater Acoust., 1981; 31(2): 265−271
    [4]
    汤渭霖, 吴一. TBL压力起伏激励下粘弹性圆柱壳内的噪声场: I. 噪声产生机理. 声学学报, 1997; 22(1): 60−69 DOI: 10.15949/j.cnki.0371-0025.1997.01.008
    [5]
    王斌, 汤渭霖, 范军. 水听器非轴线布放时的拖线阵流噪声响应. 声学学报, 2008; 33(5): 402−408 DOI: 10.15949/j.cnki.0371-0025.2008.05.003
    [6]
    王晓林, 王茂法. 基于C&K修正模型的拖曳阵流噪声特性仿真研究. 声学与电子工程, 2010; (1): 9−13 DOI: 10.3969/j.issn.2096-2657.2010.01.003
    [7]
    杨秀庭, 孙贵青, 李敏. 矢量拖曳式线列阵声呐流噪声影响初探. 声学技术, 2007; 26(5): 775−780 DOI: 10.3969/j.issn.1000-3630.2007.05.002
    [8]
    杨秀庭, 孙贵青, 李敏. 矢量拖曳线列阵声呐流噪声的空间相关性研究. 声学学报, 2007; 32(6): 547−552 DOI: 10.15949/j.cnki.0371-0025.2007.06.010
    [9]
    孟彧仟. 矢量拖线阵流致噪声抑制方法研究. 声学与电子工程, 2010; (1): 20−24 DOI: 10.3969/j.issn.2096-2657.2010.01.005
    [10]
    李磊, 高洁, 吴克桐, 等. 一种基于矢量拖曳阵的拖船干扰抵消算法. 声学技术, 2009; 28(5): 582−585 DOI: 10.3969/j.issn1000-3630.2009.05.004
    [11]
    李磊, 吴培荣, 邓红超, 等. 矢量水听器拖曳阵的信号模拟器设计. 应用声学, 2010; 29(1): 28−35 DOI: 10.3969/j.issn.1000-310X.2010.01.005
    [12]
    张宾, 孙长瑜. 拖船干扰抵消的一种新方法研究. 仪器仪表学报, 2006; 27(S2): 1355−1357 DOI: 10.3321/j.issn:0254-3087.2006.z2.137
    [13]
    杨龙, 杨益新, 徐灵基. 水下航行器噪声源分布位置估计的瞬时频率变化率算法研究. 声学学报, 2015; 40(4): 500−510 DOI: 10.15949/j.cnki.0371-0025.2015.04.002
    [14]
    徐灵基, 杨益新, 杨龙. 水下线谱噪声源识别的波束域时频分析方法研究. 物理学报, 2015; 64(17): 189−199 DOI: 10.7498/aps.64.174304
    [15]
    蔡盛盛, 张佳维, 冯大航, 等. 改进正则化正交匹配追踪波达方向估计方法. 声学学报, 2014; 39(1): 35−41 DOI: 10.15949/j.cnki.0371-0025.2014.01.004
    [16]
    朱文龙, 印明, 佟建飞, 等. 多频带期望值最大声信号时延估计. 声学学报, 2022; 47(6): 856−866 DOI: 10.15949/j.cnki.0371-0025.2022.06.014
    [17]
    韩东, 李建, 康春玉, 等. 拖曳线列阵声呐平台噪声的空域矩阵滤波抑制技术. 声学学报, 2014; 39(1): 27−34 DOI: 10.15949/j.cnki.0371-0025.2014.01.003
    [18]
    Meng D Y, Torre D L. Robust matrix factorization with unknown noise. IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 2013: 1337–1344
    [19]
    Yong H W, Meng D W, Zuo W M, et al. Robust online matrix factorization for dynamic background subtraction. IEEE Trans. Pattern Anal. Mach. Intell., 2018; 40(7): 1726−1740 DOI: 10.1109/TPAMI.2017.2732350
    [20]
    Yu L, Antoni J, Deng J Y, et al. Low-rank gaussian mixture modeling of space-snapshot representation of microphone array measurements for acoustic imaging in a complex noisy environment. Mech. Syst. Signal Process., 2022; 165: 108294 DOI: 10.1016/j.ymssp.2021.108294
    [21]
    Yu L, Chen Y Q, Zhang Y L, et al. On-line harmonic signal denoising from the measurement with non-stationary and non-Gaussian noise. Signal Process., 2022; 201: 108723 DOI: 10.1016/j.sigpro.2022.108723
    [22]
    Emiya V, Hamon R, Chaux C. Being low-rank in the time-frequency plane. IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 2018: 4659−4663
    [23]
    Usevich K, Emiya V, Brie D, et al. Characterization of finite signals with low-rank STFT. IEEE Statistical Signal Processing Workshop, Germany, 2018: 393–397
    [24]
    Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B, 1977; 39: 1−22 DOI: 10.1111/j.2517-6161.1977.tb01600.x
    [25]
    Bishop C M. Pattern recognition and machine learning. New York: Springer, 2006
    [26]
    Torre D L, Black M J. A framework for robust subspace learning. Int. J. Comput. Vision, 2003; 54: 117−142 DOI: 10.1023/A:1023709501986
    [27]
    Yang Y, Rao J. Robust and efficient harmonics denoising in large dataset based on random SVD and soft thresholding. IEEE Access, 2019; 7: 77607−77617 DOI: 10.1109/ACCESS.2019.2921579

Catalog

    Article Metrics

    Article views (185) PDF downloads (69) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return