EI / SCOPUS / CSCD 收录

中文核心期刊

HUANG Jianli, WANG Yu, GONG Zaixiao, WANG Jun, WANG Haibin. Beam-domain deconvolution beamforming algorithm enhanced by compressive sensing[J]. ACTA ACUSTICA, 2025, 50(1): 97-108. DOI: 10.12395/0371-0025.2023135
Citation: HUANG Jianli, WANG Yu, GONG Zaixiao, WANG Jun, WANG Haibin. Beam-domain deconvolution beamforming algorithm enhanced by compressive sensing[J]. ACTA ACUSTICA, 2025, 50(1): 97-108. DOI: 10.12395/0371-0025.2023135

Beam-domain deconvolution beamforming algorithm enhanced by compressive sensing

More Information
  • PACS: 
    • 43.30  (Underwater sound)
    • 43.60  (Acoustic signal processing)
  • Received Date: July 16, 2023
  • Revised Date: December 10, 2023
  • Deconvolution beamforming can effectively suppress sidelobes and improve the azimuth resolution of multiple targets. However, traditional deconvolution beamforming methods mostly require the beam pattern to be shift-invariant, so they are only suitable for specific arrays such as linear arrays and circular arrays. Traditional deconvolution beamforming methods usually focus on beamforming intensity, which proves inadequate for handling coherent signals. To address this limitation, a deconvolution beamforming method for arbitrary arrays in beam domain is proposed, which is developed within the framework of compressive sensing. This method first uses conventional beamforming to obtain several complex output beams, and then applies the sparse Bayesian learning (SBL) algorithm to achieve deconvolution of complex output beams. This deconvolution process enhances the accuracy of direction of arrival (DOA) estimation for true targets. The proposed method effectively reduces computational complexity by optimizing the number of output beams generated during conventional beamforming. It is equally applicable to both uncoherent and coherent signals, outperforming conventional deconvolution beamforming methods. The simulation and experimental results demonstrate that the proposed method has azimuth resolution performance comparable to the traditional SBL beamforming in element domain, while outperforming conventional beamforming and minimum variance distortionless response (MVDR) method. When applied to short dense arrays, the proposed method achieves significantly lower computational complexity compared to traditional SBL in element domain, particularly when the number of output beams from conventional beamforming is much smaller than the number of array elements.

  • [1]
    Baggeroer A B, Cox H. Passive sonar limits upon nulling multiple moving ships with large aperture arrays. Conference Record of the 33rd Asilomar Conference on Signals, Systems, and Computers, IEEE, Pacific Grove, CA, USA, 1999: 103–108
    [2]
    Ahmed N, Wang H, Raja M A Z, et al. Novel design of grey wolf optimization heuristics for high resolution direction of arrival estimation in acoustic plane waves. Wirel. Personal Commun., 2023; 128(4): 2507−2529 DOI: 10.1007/s11277-022-10057-w
    [3]
    McCloud M L, Scharf L L. A new subspace identification algorithm for high-resolution DOA estimation. IEEE Trans. Antennas Propag., 2002; 50(10): 1382−1390 DOI: 10.1109/TAP.2002.805244
    [4]
    Mahnaz A P, Sedigheh G. Mℓ1,2-MUSIC algorithm for DOA estimation of coherent sources. IET Signal Process., 2017; 11(4): 429−436 DOI: 10.1049/iet-spr.2016.0246
    [5]
    Xia J, Lu X, Chen W. Multi-channel deconvolution for forward-looking phase array radar imaging. Remote Sens., 2017; 9(7): 703 DOI: 10.3390/rs9070703
    [6]
    Pan X, Bao Y, Zhu Y, et al. Deconvolved conventional beamforming and adaptive cubature Kalman filter based distant speech perception system. IEEE Access, 2020; 8: 187948−187958 DOI: 10.1109/ACCESS.2020.3030814
    [7]
    Zhang Y, Lang S, Wang H, et al. Super-resolution algorithm based on Richardson–Lucy deconvolution for three-dimensional structured illumination microscopy. J. Opt. Soc. Am. A, 2019; 36(2): 173 DOI: 10.1364/JOSAA.36.000173
    [8]
    Shin H C, Prager R, Gomersall H, et al. Estimation of average speed of sound using deconvolution of medical ultrasound data. Ultrasound Med. Biol., 2010; 36(4): 623−636 DOI: 10.1016/j.ultrasmedbio.2010.01.011
    [9]
    Den Ouden O F C, Assink J D, Smets P S M, et al. CLEAN beamforming for the enhanced detection of multiple infrasonic sources. Geophys. J. Int., 2020; 221(1): 305−317 DOI: 10.1093/gji/ggaa010
    [10]
    Gade S, Hald J. Noise source identification with increased spatial resolution used in automotive industry. J. Acoust. Soc. Am., 2012; 131(4S): 3220 DOI: 10.1121/1.4708008
    [11]
    Sun D, Ma C, Mei J, et al. The deconvolved conventional beamforming for non-uniform line arrays. IEEE OCEANS, Kobe, Japan, 2018: 1–4
    [12]
    Brooks T F, Humphreys W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays. J. Sound Vib., 2006; 294: 856−879 DOI: 10.1016/j.jsv.2005.12.046
    [13]
    Dougherty R. Extensions of DAMAS and benefits and limitations of deconvolution in beamforming. 11th AIAA/CEAS Aeroacoustics Conference, AIAA, Monterey, California, 2005
    [14]
    Ehrenfried K, Koop L. Comparison of iterative deconvolution algorithms for the mapping of acoustic sources. AIAA J., 2007; 45(7): 1584−1595 DOI: 10.2514/1.26320
    [15]
    Yang T C. Deconvolved conventional beamforming for a horizontal line array. IEEE J. Oceanic Eng., 2018; 43(1): 160−172 DOI: 10.1109/JOE.2017.2680818
    [16]
    孙大军, 马超, 梅继丹, 等. 反卷积波束形成技术在水声阵列中的应用. 哈尔滨工程大学学报, 2020; 41(6): 860−869 DOI: 10.11990/jheu.201905013
    [17]
    梅继丹, 石文佩, 马超, 等. 近场反卷积聚焦波束形成声图测量. 声学学报, 2020; 45(1): 15−28 DOI: 10.15949/j.cnki.0371-0025.2020.01.002
    [18]
    Padois T, Berry A. Orthogonal matching pursuit applied to the deconvolution approach for the mapping of acoustic sources inverse problem. J. Acoust. Soc. Am., 2015; 138(6): 3678−3685 DOI: 10.1121/1.4937609
    [19]
    Nannuru S, Gerstoft P. 2D Beamforming on sparse arrays with sparse bayesian learning. IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Brighton, United Kingdom, 2019: 4355–4359
    [20]
    Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process., 2005; 53(8): 3010−3022 DOI: 10.1109/TSP.2005.850882
    [21]
    Wang F, Tian X, Liu X, et al. Combination complex-valued Bayesian compressive sensing method for sparsity constrained deconvolution beamforming. IEEE Trans. Instrum. Meas., 2022; 71: 1−13 DOI: 10.1109/TIM.2022.3169537
    [22]
    Zoltowski M D, Kautz G M, Silverstein S D. Beamspace root-MUSIC. IEEE Trans. Signal Process., 1993; 41(1): 344 DOI: 10.1109/TSP.1993.193151
    [23]
    Gemba K L, Nannuru S, Gerstoft P, et al. Multi-frequency sparse Bayesian learning for robust matched field processing. J. Acoust. Soc. Am., 2017; 141(5): 3411−3420 DOI: 10.1121/1.4983467
    [24]
    Xu X L, Buckley K. An analysis of beam-space source localization. IEEE Trans. Signal Process., 1993; 41(1): 501 DOI: 10.1109/TSP.1993.193189
    [25]
    刘章孟. 基于信号空域稀疏性的阵列处理理论与方法. 博士学位论文, 长沙: 国防科技大学, 2012
  • Related Articles

    [1]LI Jian, LI He, GUO Xinyi, MA Li. Broadband source localization using near-surface vertical array in deep ocean based on sparse Bayesian learning[J]. ACTA ACUSTICA, 2025, 50(3): 703-717. DOI: 10.12395/0371-0025.2023222
    [2]LI Chenmu, QIU Longhao, WANG Jinjin, LIANG Guolong, SHEN Tongsheng. A sparse Bayesian learning based off-grid localization algorithm for mixed far-field and near-field sources[J]. ACTA ACUSTICA, 2025, 50(2): 456-474. DOI: 10.12395/0371-0025.2023214
    [3]LI Xionghui, LIANG Guolong, SHEN Tongsheng, LUO Zailei. Improved sparse Bayesian learning direction estimation algorithm for single vector hydrophones[J]. ACTA ACUSTICA, 2025, 50(1): 77-85. DOI: 10.12395/0371-0025.2023121
    [4]HONG Danyang, WANG Wei, YIN Li, PU Zhanqing, ZHOU Chengyang, HUANG Haining. An improved temporal multiple sparse Bayesian learning under-ice acoustic channel estimation method[J]. ACTA ACUSTICA, 2022, 47(5): 591-602. DOI: 10.15949/j.cnki.0371-0025.2022.05.013
    [5]WANG Yan, ZHAO Lei, HAO Yu, QIU Longhao, LIANG Guolong. Sparse Bayesian learning for direction-of-arrival estimation with a turning observation platform[J]. ACTA ACUSTICA, 2022, 47(4): 432-439. DOI: 10.15949/j.cnki.0371-0025.2022.04.003
    [6]JIANG Weihua, TONG Feng, ZHANG Hongtao, LI Bin. Dynamic discriminative compressed sensing estimation of hybrid sparse underwater acoustic channel[J]. ACTA ACUSTICA, 2021, 46(6): 825-834. DOI: 10.15949/j.cnki.0371-0025.2021.06.005
    [7]YIN Jingwei, GAO Xinbo, HAN Xiao, ZHANG Xiao, WANG Dayu, ZHANG Jincan. Underwater acoustic channel estimation and impulsive noise mitigation based on sparse Bayesian learning[J]. ACTA ACUSTICA, 2021, 46(6): 813-824. DOI: 10.15949/j.cnki.0371-0025.2021.06.004
    [8]GUO Qichao, LI Fenghua, PENG Chaohui, NIU Haiqiang, YANG Xishan. Blind estimation of underwater acoustic multipath channel using sparse Bayesian learning[J]. ACTA ACUSTICA, 2021, 46(6): 789-799. DOI: 10.15949/j.cnki.0371-0025.2021.06.002
    [9]ZHOU Mingyang, GUO Lianghao, YAN Chao. Improved Bayesian compressive sensing-based direction of arrival estimation[J]. ACTA ACUSTICA, 2019, 44(6): 961-969. DOI: 10.15949/j.cnki.0371-0025.2019.06.002
    [10]QIU Longhao, LIANG Guolong, WANG Yan, WANG Jinjin. Mixed near-field and far-field sources localization method using sparse Bayesian learning[J]. ACTA ACUSTICA, 2018, 43(1): 1-11. DOI: 10.15949/j.cnki.0371-0025.2018.01.001

Catalog

    Article Metrics

    Article views (206) PDF downloads (105) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return