Citation: | MEI Zhongjian, LI Xiaodong, LYU Yadong, CHENG Xiaobin, YANG Jun. Performance analysis of perforated panel with impedance-decoupling tube-bundles[J]. ACTA ACUSTICA, 2025, 50(2): 246-256. DOI: 10.12395/0371-0025.2023267 |
To solve the problem of coupling of acoustic resistance and acoustic reactance which affects impedance matching in acoustic absorbers, a perforated panel structure with segmented impedance-decoupling tube-bundles (PP-IDTB) is proposed to realize the decoupling of acoustic resistance and acoustic reactance. The decoupling of the acoustic resistance and acoustic reactance of the PP-IDTB can be achieved by adjusting the geometrical parameters of the upper fine tube bundles and the lower thick tube. Theoretical and simulated results show that by changing the diameter of the upper thin tubes, the acoustic resistance can be changed, while the acoustic reactance remains constant, thus the frequency width of the absorption can be adjusted. The acoustic reactance varies with the length of the lower thick tube, while the acoustic resistance remains almost unchanged, thus the peak frequency of absorption can be adjusted. Moreover, impedance decoupling can improve the impedance matching effect in a wide frequency range, further enhance the performance of sound absorption, and broaden the adjustment range of the absorption band. The effectiveness of impedance decoupling in modulating the absorption performance of PP-IDTB is experimentally verified.
[1] |
Komkin A I, Mironov M A, Bykov A I. Sound absorption by a Helmholtz resonator. Acoust. Phys., 2017; 63(4): 385−392 DOI: 10.1134/S1063771017030071
|
[2] |
Wu D Z, Zhang N, Ma C K, et al. Hybrid noise control using multiple Helmholtz resonator arrays. Appl. Acoust., 2019; 143: 31−37 DOI: 10.1016/j.apacoust.2018.08.023
|
[3] |
Maa D Y. Theory and design of microperforated panel sound-absorbing constructions. Sci. China, Ser. A, 1975; 18(1): 55−71 DOI: 10.1360/ya1975-18-1-55
|
[4] |
马大猷. 微穿孔板结构的设计. 声学学报, 1988; 13(3): 174−180 DOI: 10.15949/j.cnki.0371-0025.1988.03.003
|
[5] |
Maa D Y. Potential of microperforated panel absorber. J. Acoust. Soc. Am., 1998; 104(5): 2861−2866 DOI: 10.1121/1.423870
|
[6] |
吕亚东, 魏文, 朱永波, 等. 管束式穿孔板共振吸声装置: CN 1307329A. 2001-08-08
|
[7] |
Selamet A, Lee I. Helmholtz resonator with extended neck. J. Acoust. Soc. Am., 2003; 113(4): 1975−1985 DOI: 10.1121/1.1558379
|
[8] |
Bi R, Liu Z S, Li K M, et al. Helmholtz resonator with extended neck and absorbing material. Appl. Mech. Mater., 2012; 141(1): 308−312 DOI: 10.4028/www.scientific.net/amm.141.308
|
[9] |
Li D K, Chang D Q, Liu B L. Enhancing the low frequency sound absorption of a perforated panel by parallel-arranged extended tubes. Appl. Acoust., 2016; 102: 126−132 DOI: 10.1016/j.apacoust.2015.10.001
|
[10] |
Cai C Z, Mak C M, Shi X F. An extended neck versus a spiral neck of the Helmholtz resonator. Appl. Acoust., 2017; 115: 74−80 DOI: 10.1016/j.apacoust.2016.08.020
|
[11] |
Huang S, Fang X, Wang X, et al. Acoustic perfect absorbers via Helmholtz resonators with embedded apertures. J. Acoust. Soc. Am., 2019; 145(1): 254−262 DOI: 10.1121/1.5087128
|
[12] |
Huang S, Zhou Z, Li D, et al. Compact broadband acoustic sink with coherently coupled weak resonances. Sci. Bull., 2020; 65(5): 373−379 DOI: 10.1016/j.scib.2019.11.008
|
[13] |
Guo J, Fang Y, Jiang Z, et al. An investigation on noise attenuation by acoustic liner constructed by Helmholtz resonators with extended necks. J. Acoust. Soc. Am., 2021; 149(1): 70−81 DOI: 10.1121/10.0002990
|
[14] |
Zhang L, Xin F. Perfect low-frequency sound absorption of rough neck embedded Helmholtz resonators. J. Acoust. Soc. Am., 2022; 151(2): 1191−1199 DOI: 10.1121/10.0009529
|
[15] |
Cheng B, Gao N, Huang Y, et al. Broadening perfect sound absorption by composite absorber filled with porous material at low frequency. J. Vib. Control, 2022; 28(3-4): 410−424 DOI: 10.1177/1077546320980214
|
[16] |
Lyu Y D, Li X D. The perforated panel resonator with flexible tube bundle and its acoustical measurements. 30th International Congress and Exposition on Noise Control Engineering, Hague, Netherlands, 2001
|
[17] |
张倩. 管束穿孔板和内置共振腔吸声结构的吸声机理研究. 博士学位论文, 北京: 中国科学院研究生院, 2011
|
[18] |
Simon F. Long elastic open neck acoustic resonator for low frequency absorption. J. Sound Vib., 2018; 421: 1−16 DOI: 10.1016/j.jsv.2018.01.044
|
[19] |
苏玉, 梅中建, 吕亚东, 等. 管束穿孔板的管腔耦合共振吸声机理研究. 声学学报, 2021; 46(6): 1202−1211 DOI: 10.15949/j.cnki.0371-0025.2021.06.040
|
[20] |
Stinson M R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am., 1991; 89(2): 550−558 DOI: 10.1121/1.400379
|
[21] |
Champoux Y, Allard J F. Dynamic tortuosity and bulk modulus in air-saturated porous media. J. Appl. Phys., 1991; 70(4): 1975−1979 DOI: 10.1063/1.349482
|
[22] |
Long H, Cheng Y, Liu X. Asymmetric absorber with multiband and broadband for low-frequency sound. Appl. Phys. Lett., 2017; 111(14): 143502 DOI: 10.1063/1.4998516
|
[23] |
Long H, Liu C, Shao C, et al. Tunable and broadband asymmetric sound absorptions with coupling of acoustic bright and dark modes. J. Sound Vib., 2020; 479: 115371 DOI: 10.1016/j.jsv.2020.115371
|
[24] |
全国声学标准化委员会. 声学 阻抗管中吸声系数和声阻抗的测量, 第2部分 传递函数法: GB/T 18696.2-2002. 北京: 中国标准出版社, 2002: 8−9
|