EI / SCOPUS / CSCD 收录

中文核心期刊

ZHANG Tianyu, TENG Pengxiao, LYU Jun, CHENG Wei, LANG Rui, YANG Jun. Long-range infrasound source localization algorithms combining spherical pseudolinear estimator and propagation noise estimation[J]. ACTA ACUSTICA, 2025, 50(2): 395-411. DOI: 10.12395/0371-0025.2024067
Citation: ZHANG Tianyu, TENG Pengxiao, LYU Jun, CHENG Wei, LANG Rui, YANG Jun. Long-range infrasound source localization algorithms combining spherical pseudolinear estimator and propagation noise estimation[J]. ACTA ACUSTICA, 2025, 50(2): 395-411. DOI: 10.12395/0371-0025.2024067

Long-range infrasound source localization algorithms combining spherical pseudolinear estimator and propagation noise estimation

More Information
  • PACS: 
    • 43.28  (Aeroacoustics and atmospheric sound)
    • 43.60  (Acoustic signal processing)
  • Received Date: February 28, 2024
  • Revised Date: April 26, 2024
  • The spherical pseudolinear estimator offers a more stable and efficient solution to the long-range infrasound source localization. However, the propagation of infrasound over extended distances is vulnerable to atmospheric crosswinds, which cause deviations in the back-azimuth measurements. This phenomenon introduces inaccuracies in the localization results and performance evaluation of the spherical pseudolinear estimator. This research incorporates the effect of infrasound propagation into the noise model, reanalyzes the bias and error covariance performance of two spherical pseudolinear estimators, and provides theoretical expressions. Subsequently, a propagation noise estimation method is proposed that utilizes hybrid time-space dependent atmospheric modeling and ray tracing. Furthermore, long-range infrasound source localization algorithms are presented that integrate the spherical pseudolinear estimator with propagation noise estimation. The accuracy of the theoretical analysis and the performance advantages of the proposed algorithms are validated by simulations and an experiment.

  • [1]
    Le Pichon A, Blanc E, Hauchecorne A. Infrasound monitoring for atmospheric studies: Challenges in middle atmosphere dynamics and societal benefit. Cham: Springer International Publishing, 2019
    [2]
    Lee W H K, Stewart S W. Principles and applications of microearthquake networks. New York: Academic Press, 1981
    [3]
    Jordan T H, Sverdrup K A. Teleseismic location techniques and their application to earthquake clusters in the South-Central Pacific. Bull. Seism. Soc. Am., 1981; 71(4): 1105−1130 DOI: 10.1785/BSSA0710041105
    [4]
    Bratt S R, Bache T C. Locating events with a sparse network of regional arrays. Bull. Seism. Soc. Am., 1988; 78(2): 780−798 DOI: 10.1785/bssa0780020780
    [5]
    Blom P S, Marcillo O, Arrowsmith S J. Improved Bayesian infrasonic source localization for regional infrasound. Geophys. J. Int., 2015; 203(3): 1682−1693 DOI: 10.1093/gji/ggv387
    [6]
    Arrowsmith S, Park J, Che I Y, et al. Event location with sparse data: When probabilistic global search is important. Seismol. Res. Lett., 2021; 92(2A): 976−985 DOI: 10.1785/0220200292
    [7]
    Matoza R S, Green D N, Le Pichon A, et al. Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network. J. Geophys. Res.: Solid Earth, 2017; 122(4): 2946−2971 DOI: 10.1002/2016JB013356
    [8]
    De Negri R, Matoza R S. Rapid location of remote volcanic infrasound using 3D ray tracing and empirical climatologies: Application to the 2011 Cordón Caulle and 2015 Calbuco eruptions, Chile. J. Geophys. Res.: Solid Earth, 2023; 128(3): 1−18 DOI: 10.1029/2022JB025735
    [9]
    Almendros J, Chouet B. Performance of the radial semblance method for the location of very long period volcanic signals. Bull. Seism. Soc. Am., 2003; 93(5): 1890−1903 DOI: 10.1785/0120020143
    [10]
    Mckee K, Fee D, Rowell C, et al. Network-based evaluation of the infrasonic source location at Sakurajima volcano, Japan. Seismol. Res. Lett., 2014; 85(6): 1200−1211 DOI: 10.1785/0220140119
    [11]
    Fee D, Toney L, Kim K, et al. Local explosion detection and infrasound localization by reverse time migration using 3-D finite-difference wave propagation. Front. Earth Sci., 2021; 9: 1−14 DOI: 10.3389/feart.2021.620813
    [12]
    吕君, 郭泉, 冯浩楠, 等. 北京地震前的异常次声波. 地球物理学报, 2012; 55(10): 3379−3385 DOI: 10.6038/j.issn.0001-5733.2012.10.020
    [13]
    郭泉, 杨亦春, 吕君, 等. 基于广域次声传感器网络的地震本地次声波监测. 地球科学(中国地质大学学报), 2014; 39(12): 1807−1817 DOI: 10.3799/dqkx.2014.164
    [14]
    杨亦春, 郭泉, 吕君, 等. 大地震前出现的异常次声波观测研究. 物理学报, 2014; 63(13): 224−237 DOI: 10.7498/aps.63.134302
    [15]
    赵久彬, 刘元雪, 杨骏堂, 等. 滑坡次声信号简正波模型的匹配场超前定位算法. 岩土力学, 2020; 41(12): 4116−4126 DOI: 10.16285/j.rsm.2020.0345
    [16]
    Zhang T, Teng P, Lyu J, et al. Quasi-closed-form algorithms for spherical angle-of-arrival source localization. IEEE Trans. Signal Process., 2024; 72: 432−448 DOI: 10.1109/TSP.2023.3340879
    [17]
    Diamond M. Cross wind effect on sound propagation. J. Appl. Meteorol. Clim., 1964; 3(2): 208−210 DOI: 10.1175/1520-0450(1964)003<0208:CWEOSP>2.0.CO;2
    [18]
    Smets P S M, Assink J D, Le Pichon A, et al. ECMWF SSW forecast evaluation using infrasound. J. Geophys. Res.: Atmos., 2016; 121(9): 4637−4650 DOI: 10.1002/2015JD024251
    [19]
    Blom P, Waxler R. Modeling and observations of an elevated, moving infrasonic source: Eigenray methods. J. Acoust. Soc. Am., 2017; 141: 2681−2692 DOI: 10.1121/1.4980096
    [20]
    Ceranna L, Le Pichon A, Green D N, et al. The Buncefield explosion: A benchmark for infrasound analysis across Central Europe. Geophys. J. Int., 2009; 177(2): 491−508 DOI: 10.1111/j.1365-246X.2008.03998.x
    [21]
    Pilger C, Ceranna L, Ross J O, et al. The European infrasound bulletin. Pure Appl. Geophys., 2018; 175(10): 3619−3638 DOI: 10.1007/s00024-018-1900-3
    [22]
    Vincenty T. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev., 1975; 23(176): 88−93 DOI: 10.1179/sre.1975.23.176.88
    [23]
    Doǧançay K. 3D pseudolinear target motion analysis from angle measurements. IEEE Trans. Signal Process., 2015; 63(6): 1570−1580 DOI: 10.1109/TSP.2015.2399869
    [24]
    Cansi Y. An automatic seismic event processing for detection and location: The P.M.C.C. method. Geophys. Res. Lett., 1995; 22(9): 1021−1024 DOI: 10.1029/95GL00468
    [25]
    Havelock D, Kuwano S, Vorländer M. Handbook of signal processing in acoustics. New York: Springer, 2008: 1425−1435
    [26]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc., 2020; 146(730): 1999−2049 DOI: 10.1002/qj.3803
    [27]
    Korn G A, Korn T M. Mathematical handbook for scientists and engineers: Definitions, theorems, and formulas for reference and review. Dover ed. Mineola, N. Y.: Dover Publications, 2000
    [28]
    Torrieri D J. Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst., 1984; 20(2): 183−198 DOI: 10.1109/TAES.1984.310439
  • Related Articles

    [1]HUANG Xiaolong, LI Ning, WENG Chunsheng. Experimental study on the physical characteristics of noise propagation process of multi-tube pulse detonation engine[J]. ACTA ACUSTICA, 2021, 46(3): 415-422. DOI: 10.15949/j.cnki.0371-0025.2021.03.010
    [2]MO Yaxiao, PIAO Shengchun, ZHANG Haigang, LI Li. An energy-conserving two-way coupled mode model for underwater acoustic propagation[J]. ACTA ACUSTICA, 2016, 41(2): 154-162. DOI: 10.15949/j.cnki.0371-0025.2016.02.002
    [3]GAN Zhangsheng, CHEN Xinzhao, CHEN Jian. The mathematics model for estimating sound power of noise sources by scanning method[J]. ACTA ACUSTICA, 2000, 25(1): 66-70. DOI: 10.15949/j.cnki.0371-0025.2000.01.012
    [4]JIANG Guojian, LIN Jianheng, MA Jie, ZHAO Jianping. Theoretical model of noise caused by ship propeller cavitation[J]. ACTA ACUSTICA, 1998, 23(5): 401-408. DOI: 10.15949/j.cnki.0371-0025.1998.05.003
    [5]LIN Guozhong, XU Xianjin, SHI Jianwu. Sound propagation in complicated industrial enclosures[J]. ACTA ACUSTICA, 1993, 18(5): 367-372. DOI: 10.15949/j.cnki.0371-0025.1993.05.007
    [6]XIE Jinlai, YANG Xunren. Measurements and analyses of infrasound noise field in the atmosphere[J]. ACTA ACUSTICA, 1991, 16(3): 230-234. DOI: 10.15949/j.cnki.0371-0025.1991.03.009
    [7]ZHENG Hong, ZHAO Mingzhou, XU Yongchen, FENG Cuiying. Sound propagation in glass-ceramic[J]. ACTA ACUSTICA, 1991, 16(1): 8-12. DOI: 10.15949/j.cnki.0371-0025.1991.01.002
    [8]HU Tianyu, ZHANG Changling. SCALE MODEL EXPERIMENT FOR TRAFFIC NOISE EVALUATION[J]. ACTA ACUSTICA, 1989, 14(2): 117-125. DOI: 10.15949/j.cnki.0371-0025.1989.02.006
    [9]WU Guan-jun. MODELS OF THE LOW-NOISE-CHANNEL IN SHALLOW WATER[J]. ACTA ACUSTICA, 1988, 13(3): 222-228. DOI: 10.15949/j.cnki.0371-0025.1988.03.010
    [10]TU YAN. THE THEORETICAL AND OBSERVED DISPERSION OF ACOUSTIC-GRAVITY WAVE IN THE ATMOSPHERE[J]. ACTA ACUSTICA, 1983, 8(4): 227-235. DOI: 10.15949/j.cnki.0371-0025.1983.04.005

Catalog

    Article Metrics

    Article views (33) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return